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Background: state-space model

We are interested in Markov state-space dynamical systems that
can be described by the pair of equations

xt = f (xt−1, θ) + vt, (1)
yt = g(xt, θ) + rt, (2)

where
• xt ∈ Rdx is a state vector,
• yt ∈ Rdy is the noisy observation vector, and
• θ ∈ Rdθ is an unknown parameter vector.
We have available the pdfs p(xt|xt−1, θ) and p(yt|xt, θ).

Background: nested filtering

Goal: Given prior distributions, p(θ0) and p(x0), we want to computate
recursively the joint posterior pdf of both the state and the parameters

p(θ, xt|y1:t) = p(xt|y1:t, θ)︸ ︷︷ ︸
x-layer

× p(θ|y1:t)︸ ︷︷ ︸
θ-layer

Approach: We approximate the pdf of the parameters with a sampled-
based filtering method (e.g., sequential Monte Carlo), and we run other
filtering method to approximate the pdf of the state conditional on each
parameter sample.

• Initialization: Draw N particles/points {θ
(i)
0 } ∼ p(θ0).

• For each t ≥ 0:
1. Jittering step: Draw θ̃

(i)
t ∼ κN(θ|dθ

(i)
t−1).

2.For each i = 1, . . . , N , run a filtering method for the state:
a.Propagate the state: approximate

p̂(xt|y1:t−1, θ̃
(i)
t ) =

∫
p(xt|xt−1, θ̃

(i)
t )p̂(xt−1|y1:t−1, θ̃

(i)
t )dxt−1. (3)

b.Evaluate the likelihood, p(yt|xt, θ̃
(i)
t ), and approximate the

posterior pdf,
p̂(xt|y1:t, θ̃

(i)
t ) ∝ p(yt|xt, θ̃

(i)
t )p̂(xt|y1:t−1, θ̃

(i)
t ). (4)

c.Approximate the marginal likelihood
p̂(yt|θ̃

(i)
t , y1:t−1) =

∫
p(yt|xt, θ̃

(i)
t )p̂(xt|y1:t−1, θ̃

(i)
t )dxt (5)

3.Approximate the posterior pdf of the parameters as
p̂(θ|y1:t) ∝ p̂(yt|θ̃

(i)
t , y1:t−1)p̂(θ|y1:t−1), (6)

and obtain new set of samples {θ
(i)
t } ∼ p̂(θ|y1:t).

Family of nested methods:
• Nested particle filter (NPF) [1]. Monte Carlo-based techniques.
• Nested hybrid filter (NHF) [2]. Monte Carlo-based in the θ-layer,

and Gaussian approximations in the x-layer (e.g., EKF, UKF).
• Nested Gaussian filter (NGF) [3]. Deterministic-sampling

techniques in the θ-layer (e.g., UKF, EnKF, QKF), and other Gaussian
approximations in the x-layer.
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Objective and approach

Objective:
• Reduce computational complexity of nested Gaussian

filters without compromising performance.
Approach:

• Reduce the number of points, N , when parameters are
close to convergence.

• Decision based on an adaptive rule that uses the statistic ρt.

The statistic ρt

With Nt defined as the number of samples at time t, the sample quality
is assessed with:

ρt = 1∑Nt
i=1(s̄

(i)
t )2

with s̄
(i)
t = p(yt|y1:t−1, θ̃

(i)
t )∑Nt

n=1 p(yt|y1:t−1, θ̃
(n)
t )

.

• It takes its minimum value in ρt = 1,
when only one p(yt|y1:t−1, θ̃

(i)
t ), is different from zero.

• It takes its maximum value in ρt = Nt,
when for all the evaluations p(yt|y1:t−1, θ̃

(i)
t ) are equal.

Adaptive rule

We assume a NGF implementation using cubature or quadrature
rules to approximate p(θ|y1:t). At each time step t we define

{θ
(i)
t , w

(i)
t }Nt

i=1 ∼ p̂(θ|y1:t), where Nt = αdθ
t , αt ∈ N.

Adaptive rule. We set 0 < ϵ ≪ 1 to adjust how conservative the rule is,
and 1 < αmin < α0, to ensure Nt ≥ 1, ∀t.

• If ρt

Nt
< 1 − ϵ,

Nt+1 = αdθ
t+1 with αt+1 = max(αt − 1, αmin).

• Otherwise, Nt+1 = Nt.

Numerical Experiments

• We consider the stochastic Lorenz 63 model described by
x1,t = x1,t−1 − ∆S(x1,t−1 − x2,t−1) +

√
∆σv1,t,

x2,t = x2,t−1 + ∆[(R − x3,t−1)x1,t−1 − x2,t−1] +
√

∆σv2,t,

x3,t = x3,t−1 + ∆(x1,t−1x2,t−1 − Bx3,t−1) +
√

∆σv3,t, (7)
where θ = [S, R, B]⊤ ∈ R3 is the unknown static parameter vector,
∆ is the integration time-step, {vi,t}3

i=1 are independent Wiener
processes, and σ > 0.

• Comparison of NGF with a fixed Nt = N = αdθ, and NGF with
adaptive rule, where α0 = 4 and αmin = 2.
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