

Online Adaptation of the Number of Parameter Samples in Nested Filtering

Sara Pérez-Vieites*, Víctor Elvira†

Aalto-yliopisto Aalto-universitetet Aalto University

*Department of Electrical Engineering and Automation, Aalto University, Finland. [†]School of Mathematics, University of Edinburgh, United Kingdom.

Emails: sara.perezvieites@aalto.fi*, victor.elvira@ed.ac.uk[†]

Background: state-space model

We are interested in Markov state-space dynamical systems that can be described by the pair of equations

$$\boldsymbol{x}_t = f(\boldsymbol{x}_{t-1}, \boldsymbol{\theta}) + \boldsymbol{v}_t, \tag{1}$$

$$\boldsymbol{y}_t = g(\boldsymbol{x}_t, \boldsymbol{\theta}) + \boldsymbol{r}_t, \tag{2}$$

where

- $x_t \in \mathbb{R}^{d_x}$ is a **state** vector,
- $y_t \in \mathbb{R}^{d_y}$ is the noisy **observation** vector, and
- $\theta \in \mathbb{R}^{d_{\theta}}$ is an **unknown parameter** vector.

We have available the pdfs $p(\boldsymbol{x}_t|\boldsymbol{x}_{t-1},\boldsymbol{\theta})$ and $p(\boldsymbol{y}_t|\boldsymbol{x}_t,\boldsymbol{\theta})$.

Background: nested filtering

Goal: Given prior distributions, $p(\boldsymbol{\theta}_0)$ and $p(\boldsymbol{x}_0)$, we want to computate recursively the joint posterior pdf of both the state and the parameters

$$p(\boldsymbol{\theta}, \boldsymbol{x}_t | \boldsymbol{y}_{1:t}) = \underbrace{p(\boldsymbol{x}_t | \boldsymbol{y}_{1:t}, \boldsymbol{\theta})}_{\boldsymbol{x}\text{-layer}} \times \underbrace{p(\boldsymbol{\theta} | \boldsymbol{y}_{1:t})}_{\boldsymbol{\theta}\text{-layer}}$$

Approach: We approximate the pdf of the parameters with a **sampled**based filtering method (e.g., sequential Monte Carlo), and we run other filtering method to approximate the pdf of the state conditional on each parameter sample.

- Initialization: Draw N particles/points $\{\boldsymbol{\theta}_0^{(i)}\} \sim p(\boldsymbol{\theta}_0)$.
- For each $t \geq 0$:
 - 1. Jittering step: Draw $\tilde{\boldsymbol{\theta}}_{t}^{(i)} \sim \kappa_{N}(\boldsymbol{\theta}|d\boldsymbol{\theta}_{t-1}^{(i)})$.
 - 2. For each i = 1, ..., N, run a filtering method for the state:
 - a. Propagate the state: approximate

$$\widehat{p}(\boldsymbol{x}_{t}|\boldsymbol{y}_{1:t-1}, \widetilde{\boldsymbol{\theta}}_{t}^{(i)}) = \int p(\boldsymbol{x}_{t}|\boldsymbol{x}_{t-1}, \widetilde{\boldsymbol{\theta}}_{t}^{(i)}) \widehat{p}(\boldsymbol{x}_{t-1}|\boldsymbol{y}_{1:t-1}, \widetilde{\boldsymbol{\theta}}_{t}^{(i)}) d\boldsymbol{x}_{t-1}.$$
(3)

b. Evaluate the likelihood, $p(\boldsymbol{y}_t|\boldsymbol{x}_t, \tilde{\boldsymbol{\theta}}_t^{(i)})$, and approximate the posterior pdf,

$$\widehat{p}(\boldsymbol{x}_t|\boldsymbol{y}_{1:t}, \widetilde{\boldsymbol{\theta}}_t^{(i)}) \propto p(\boldsymbol{y}_t|\boldsymbol{x}_t, \widetilde{\boldsymbol{\theta}}_t^{(i)}) \widehat{p}(\boldsymbol{x}_t|\boldsymbol{y}_{1:t-1}, \widetilde{\boldsymbol{\theta}}_t^{(i)}).$$
 (4)

c. Approximate the marginal likelihood

$$\widehat{p}(\boldsymbol{y}_t|\widetilde{\boldsymbol{\theta}}_t^{(i)},\boldsymbol{y}_{1:t-1}) = \int p(\boldsymbol{y}_t|\boldsymbol{x}_t,\widetilde{\boldsymbol{\theta}}_t^{(i)})\widehat{p}(\boldsymbol{x}_t|\boldsymbol{y}_{1:t-1},\widetilde{\boldsymbol{\theta}}_t^{(i)})d\boldsymbol{x}_t$$
 (5)

3. Approximate the posterior pdf of the parameters as

$$\widehat{p}(\boldsymbol{\theta}|\boldsymbol{y}_{1:t}) \propto \widehat{p}(\boldsymbol{y}_t|\widetilde{\boldsymbol{\theta}}_t^{(i)}, \boldsymbol{y}_{1:t-1})\widehat{p}(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1}),$$
 (6)

and obtain new set of samples $\{\boldsymbol{\theta}_t^{(i)}\} \sim \hat{p}(\boldsymbol{\theta}|\boldsymbol{y}_{1:t})$.

Family of nested methods:

- Nested particle filter (NPF) [1]. Monte Carlo-based techniques.
- Nested hybrid filter (NHF) [2]. Monte Carlo-based in the θ -layer, and Gaussian approximations in the *x*-layer (e.g., EKF, UKF).
- Nested Gaussian filter (NGF) [3]. Deterministic-sampling techniques in the θ -layer (e.g., UKF, EnKF, QKF), and other Gaussian approximations in the \boldsymbol{x} -layer.

References

- Crisan, D., & Míguez, J. (2018). Nested particle filters for online parameter estimation in discrete-time state-space Markov models.
- Pérez-Vieites, S., Mariño, I. P., & Míguez, J. (2018). Probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems. Physical Review E, 98(6).
- Pérez-Vieites, S., & Míguez, J. (2021). Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models. Signal Processing, 189, 108295.
- Pérez-Vieites, S., & Elvira, V. (2023, June). Adaptive Gaussian Nested Filter for Parameter Estimation and State Tracking in Dynamical Systems. In ICASSP 2023 (pp. 1-5). IEEE.

Objective and approach

Objective:

• Reduce computational complexity of nested Gaussian filters without compromising performance.

Approach:

- Reduce the number of points, N, when parameters are close to convergence.
- Decision based on an adaptive rule that uses the statistic ρ_t .

The statistic ρ_t

With N_t defined as the number of samples at time t, the sample quality is assessed with:

$$\rho_t = \frac{1}{\sum_{i=1}^{N_t} (\bar{s}_t^{(i)})^2} \quad \text{with} \quad \bar{s}_t^{(i)} = \frac{p(\boldsymbol{y}_t | \boldsymbol{y}_{1:t-1}, \tilde{\boldsymbol{\theta}}_t^{(i)})}{\sum_{n=1}^{N_t} p(\boldsymbol{y}_t | \boldsymbol{y}_{1:t-1}, \tilde{\boldsymbol{\theta}}_t^{(n)})}.$$

- It takes its **minimum value** in $\rho_t = 1$, when only one $p(\boldsymbol{y}_t|\boldsymbol{y}_{1:t-1}, \tilde{\boldsymbol{\theta}}_t^{(i)})$, is different from zero.
- It takes its maximum value in $\rho_t = N_t$, when for all the evaluations $p(\boldsymbol{y}_t|\boldsymbol{y}_{1:t-1}, \tilde{\boldsymbol{\theta}}_t^{(i)})$ are equal.

Adaptive rule

We assume a NGF implementation using cubature or quadrature **rules** to approximate $p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t})$. At each time step t we define

$$\{\boldsymbol{\theta}_t^{(i)}, w_t^{(i)}\}_{i=1}^{N_t} \sim \widehat{p}(\boldsymbol{\theta}|\boldsymbol{y}_{1:t}), \text{ where } N_t = \alpha_t^{d_{\theta}}, \alpha_t \in \mathbb{N}.$$

Adaptive rule. We set $0 < \epsilon \ll 1$ to adjust how conservative the rule is, and $1 < \alpha_{\min} < \alpha_0$, to ensure $N_t \ge 1, \forall t$.

• If $\frac{\rho_t}{N_t} < 1 - \epsilon$,

$$N_{t+1} = \alpha_{t+1}^{d_{\theta}}$$
 with $\alpha_{t+1} = \max(\alpha_t - 1, \alpha_{\min})$.

• Otherwise, $N_{t+1} = N_t$.

Numerical Experiments

• We consider the **stochastic Lorenz 63 model** described by

$$x_{1,t} = x_{1,t-1} - \Delta S(x_{1,t-1} - x_{2,t-1}) + \sqrt{\Delta} \sigma v_{1,t},$$

$$x_{2,t} = x_{2,t-1} + \Delta [(R - x_{3,t-1})x_{1,t-1} - x_{2,t-1}] + \sqrt{\Delta} \sigma v_{2,t},$$

$$x_{3,t} = x_{3,t-1} + \Delta (x_{1,t-1}x_{2,t-1} - Bx_{3,t-1}) + \sqrt{\Delta} \sigma v_{3,t},$$
(7)

where $\boldsymbol{\theta} = [S, R, B]^{\top} \in \mathbb{R}^3$ is the unknown static parameter vector, Δ is the integration time-step, $\{v_{i,t}\}_{i=1}^3$ are independent Wiener processes, and $\sigma > 0$.

• Comparison of NGF with a fixed $N_t = N = \alpha^{d_{\theta}}$, and NGF with adaptive rule, where $\alpha_0 = 4$ and $\alpha_{\min} = 2$.

