# Nested filtering methods for Bayesian inference in state space models

#### Sara Pérez Vieites

CERI Systèmes Numériques, IMT Nord Europe (Lille, France).

 $\frac{\text{Joaqu\'{in M\'iguez}}}{\text{V\'{ictor Elvira}}} \text{ (Universidad Carlos III de Madrid, Spain) and} \\ \frac{\text{V\'{ictor Elvira}}}{\text{V\'{ictor Elvira}}} \text{ (University of Edinburgh)}.$ 

February, 2023

### Index

Introduction

State of the Art

Nested filters

Model inference Nested hybrid filter (NHF) Nested Gaussian filter (NGF)

Ongoing work

Some numerical results

Conclusions

### Index

#### Introduction

State of the Ar

Nested filter

Model inference
Nested hybrid filter (NHF)

Nested Gaussian filter (NGF)

Ongoing work

Some numerical results

Conclusion



Introduction

# 00000

We aim at **estimating the time evolution** of **dynamical systems** of different fields of science, such as:

- **Geophysics**. Prediction of the weather, ice sea changes, climate (i.e. fluid dynamics).
- Biochemistry. Prediction of the interactions and population of certain molecules.
- **Ecology**. Prediction of the population of prey and predator species in certain region.
- Quantitative finance. Evaluation/estimation of price options and risk.
- Engineering. Object/target tracking for applications such as surveillance or air traffic control.
- ...
- There are plenty of applications where the estimation of a dynamical system is needed.

# State-space model

These systems can be represented by **Markov state-space dynamical models**:



# State-space model

The state  $(x_t)$ , the observations  $(y_t)$  and the parameters  $(\theta)$  of these state-space systems are related following the **equations** 

$$\mathbf{x}_t = \mathbf{f}(\mathbf{x}_{t-1}, \boldsymbol{\theta}) + \mathbf{v}_t,$$
  
 $\mathbf{y}_t = \mathbf{g}(\mathbf{x}_t, \boldsymbol{\theta}) + \mathbf{r}_t,$ 

- f and g are the state transition function and the observation function
- v<sub>t</sub> and r<sub>t</sub> are state and observation noises

In terms of a set of relevant probability density functions (pdfs)

- Prior pdfs:  $\theta \sim p(\theta)$  and  $x_0 \sim p(x_0)$
- Transition pdf of the state:  $x_t \sim p(x_t|x_{t-1}, \theta)$
- Conditional pdf of the observation:  $y_t \sim p(y_t|x_t,\theta)$

# State-space model

The state  $(x_t)$ , the observations  $(y_t)$  and the parameters  $(\theta)$  of these state-space systems are related following the **equations** 

$$\mathbf{x}_t = \mathbf{f}(\mathbf{x}_{t-1}, \theta) + \mathbf{v}_t,$$
  
 $\mathbf{y}_t = \mathbf{g}(\mathbf{x}_t, \theta) + \mathbf{r}_t,$ 

- f and g are the state transition function and the observation function
- v<sub>t</sub> and r<sub>t</sub> are state and observation noises

In terms of a set of relevant probability density functions (pdfs):

- Prior pdfs:  $\theta \sim p(\theta)$  and  $\mathbf{x}_0 \sim p(\mathbf{x}_0)$
- Transition pdf of the state:  $x_t \sim p(x_t|x_{t-1},\theta)$
- Conditional pdf of the observation:  $\mathbf{y}_t \sim p(\mathbf{y}_t | \mathbf{x}_t, \boldsymbol{\theta})$

### State estimation

 $\longrightarrow$  Goal: Bayesian estimation of the state variables,  $p(x_t|y_{1:t},\theta)$ .

Classical filtering methods assume  $\theta$  is known, and compute



Both  $p(x_t|x_{t-1},\theta)$  and  $p(y_t|x_t,\theta)$  are described by the model.

 $\longrightarrow$  Usually  $\theta$  is not given and it needs to be estimated as well. Therefore, we are interested in both parameter and state estimation

Introduction

### State estimation

 $\longrightarrow$  Goal: Bayesian estimation of the state variables,  $p(x_t|y_{1:t},\theta)$ .

Classical filtering methods assume  $\theta$  is known, and compute



Both  $p(\mathbf{x}_t|\mathbf{x}_{t-1},\theta)$  and  $p(\mathbf{y}_t|\mathbf{x}_t,\theta)$  are described by the model.

 $\longrightarrow$  Usually  $\theta$  is not given and it needs to be estimated as well.

Therefore, we are interested in both parameter and state estimation one 7/37

Introduction

### State estimation

 $\longrightarrow$  Goal: Bayesian estimation of the state variables,  $p(x_t|y_{1:t},\theta)$ .

Classical filtering methods assume  $\theta$  is known, and compute



Both  $p(\mathbf{x}_t|\mathbf{x}_{t-1},\theta)$  and  $p(\mathbf{y}_t|\mathbf{x}_t,\theta)$  are described by the model.

 $\longrightarrow$  Usually  $\theta$  is not given and it needs to be estimated as well.

Therefore, we are interested in both parameter and state estimation.

### Index

Introduction

#### State of the Art

Nested filter

Model inference

Nested hybrid filter (NHF

Nested Gaussian filter (NGF)

Ongoing work

Some numerical result

Conclusion



### 1. State augmentation methods with artificial dynamics



- Use of an extended state vector  $\tilde{\mathbf{x}}_t = [\mathbf{x}_t, \boldsymbol{\theta}_t]^{\mathsf{T}}$ .
  - Artificial dynamics are introduced in θ to avoid degeneracy.
- Easy to apply but the artifical dynamics might introduce bias and the method lacks theoretical guarantees.

### 1. State augmentation methods with artificial dynamics



- Use of an extended state vector  $\tilde{\mathbf{x}}_t = [\mathbf{x}_t, \boldsymbol{\theta}_t]^{\mathsf{T}}$ .
- Artificial dynamics are introduced in θ to avoid degeneracy.
- Easy to apply but the artifical dynamics might introduce bias and the method lacks theoretical guarantees.

### 1. State augmentation methods with artificial dynamics



- Use of an extended state vector  $\tilde{\mathbf{x}}_t = [\mathbf{x}_t, \boldsymbol{\theta}_t]^{\mathsf{T}}$ .
- Artificial dynamics are introduced in θ to avoid degeneracy.
- Easy to apply but the artifical dynamics might introduce bias and the method lacks theoretical guarantees.

#### 2. Particle learning (PL) techniques

- It is a sampling-resampling scheme.
- It depends only on a set of finite-dimensional statistics. In a Monte Carlo setting this means that the static parameters can be efficiently represented by sampling.
- The posterior probability distribution of  $\theta$  conditional on the states  $x_0, \ldots, x_t$  can be computed in closed form.
- However, this approach is restricted to very specific models

#### 2. Particle learning (PL) techniques

- It is a sampling-resampling scheme.
- It depends only on a set of finite-dimensional statistics. In a Monte Carlo setting this means that the static parameters can be efficiently represented by sampling.
- The posterior probability distribution of  $\theta$  conditional on the states  $x_0, \dots, x_t$  can be computed in closed form.
- However, this approach is restricted to very specific models.

### 3. Recursive maximum likelihood (RML) methods

- They enable the sequential processing of the observed data as they are collected.
- They are well-principled.
- They can be applied to a broad class of models.
- However, they do not yield full posterior distributions of the unknowns and therefore, they only output point estimates instead.

### 3. Recursive maximum likelihood (RML) methods

- They enable the sequential processing of the observed data as they are collected.
- They are well-principled.
- They can be applied to a broad class of models.
- However, they do not yield full posterior distributions of the unknowns and therefore, they only output point estimates instead.

- 4. There have been advances leading to methods that
  - aim at calculating the posterior probability distribution of the unknown variables and parameters of the models and they can quantify the uncertainty or estimation error.
  - can be applied to a broad class of models.
  - are well-principled probabilistic methods with theoretical guarantees.

- 4. There have been advances leading to methods that
  - aim at calculating the posterior probability distribution of the unknown variables and parameters of the models and they can quantify the uncertainty or estimation error.
  - can be applied to a broad class of models.
  - are well-principled probabilistic methods with theoretical guarantees.

#### Some examples are:

- particle Markov chain Monte Carlo (PMCMC)<sup>1</sup>
- sequential Monte Carlo square (SMC<sup>2</sup>)<sup>2</sup>

<sup>&</sup>lt;sup>1</sup>Andrieu, Doucet, and Holenstein, "Particle Markov chain Monte Carlo methods".

<sup>&</sup>lt;sup>2</sup>Chopin, Jacob, and Papaspiliopoulos, "SMC<sup>2</sup>: A sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates" 🗇 🔻 👢 💆 👢 🔊 ९० 🖰 13/37

#### Some examples are:

- particle Markov chain Monte Carlo (PMCMC)<sup>1</sup>
- sequential Monte Carlo square (SMC<sup>2</sup>)<sup>2</sup>
  - → they are batch techniques: the whole sequence of observations has to to be re-processed from scratch.
  - --- The computational cost becomes prohibitive in high-dimensional problems.

<sup>&</sup>lt;sup>1</sup>Andrieu, Doucet, and Holenstein, "Particle Markov chain Monte Carlo methods".

<sup>&</sup>lt;sup>2</sup>Chopin, Jacob, and Papaspiliopoulos, "SMC<sup>2</sup>: A sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates" 🗇 🔻 👢 💆 👢 🔊 ९० 🖰 13/37

## Summary and Motivation

The state-of-the-art methods have one or more of the following **issues**:

- Lack of theoretical guarantees.
- Restricted to very specific models.
- Estimation error not quantified (it only provides point estimates).
- Batch technique (the whole sequence of observations have to be re-processed from scratch every time step).
- Prohibitive computational cost for high-dimensional problems.
- → We propose a **set of algorithms** that estimate the **joint posterior probability distribution of the parameters and the state**, while solving all the issues.

### Index

Introduction

State of the Art

#### Nested filters

Model inference Nested hybrid filter (NHF) Nested Gaussian filter (NGF)

Ongoing work

Some numerical results

Conclusions

### Model inference

We aim at computing the joint posterior pdf  $p(\theta, \mathbf{x}_t | \mathbf{y}_{1:t})$ , that can be written as

$$p(\boldsymbol{\theta}, \boldsymbol{x}_t | \boldsymbol{y}_{1:t}) = \underbrace{p(\boldsymbol{x}_t | \boldsymbol{\theta}, \boldsymbol{y}_{1:t})}_{2^{nd} \text{ layer}} \underbrace{p(\boldsymbol{\theta} | \boldsymbol{y}_{1:t})}_{1^{st} \text{ layer}}$$

 $\longrightarrow$  The **key difficulty** in this class of models is the Bayesian estimation of the parameter vector  $\theta$ .











### Model inference

```
1<sup>st</sup> layer
p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})
Pred. pdf of 	heta
p(\mathbf{y}_t|\boldsymbol{\theta},\mathbf{y}_{1:t-1}) = \int p(\mathbf{y}_t|\mathbf{x}_t,\boldsymbol{\theta})p(\mathbf{x}_t|\boldsymbol{\theta},\mathbf{y}_{1:t-1})d\mathbf{x}_t
    Likelihood of \theta
                                             p(\mathbf{x}_{t}|\boldsymbol{\theta},\mathbf{y}_{1:t-1}) = \int p(\mathbf{x}_{t}|\mathbf{x}_{t-1},\boldsymbol{\theta})p(\mathbf{x}_{t-1}|\boldsymbol{\theta},\mathbf{y}_{1:t-1})d\mathbf{x}_{t-1}
                                                   Pred. pdf of x
                                             p(\mathbf{y}_t|\mathbf{x}_t,\boldsymbol{\theta})
                                             Likelihood of x
                                             p(\mathbf{x}_t|\boldsymbol{\theta},\mathbf{y}_{1:t}) \propto p(\mathbf{y}_t|\mathbf{x}_t,\boldsymbol{\theta})p(\mathbf{x}_t|\boldsymbol{\theta},\mathbf{y}_{1:t-1})
                                                                                                                                                                                      2<sup>nd</sup> layer
                                               Post. pdf of x
  p(\theta|\mathbf{y}_{1:t}) \propto p(\mathbf{y}_t|\theta,\mathbf{y}_{1:t-1})p(\theta|\mathbf{y}_{1:t-1})
Post. pdf of 	heta
```

## Family of nested filters

- 1. Nested particle filters (NPFs)<sup>3</sup>.
  - Both layers → Sequential Monte Carlo (SMC) methods
- 2. Nested hybrid filters (NHFs)<sup>4</sup>.
  - $\theta$ -layer  $\longrightarrow$  Monte Carlo-based methods (e.g., SMC or SQMC)
  - x-layer  $\longrightarrow$  Gaussian techniques (e.g., EKFs or EnKFs)
- 3. Nested Gaussian filters (NGFs)<sup>5</sup>
  - $\theta$ -layer  $\longrightarrow$  Deterministic sampling methods (e.g., UKF).
  - x-layer  $\longrightarrow$  Gaussian techniques (e.g., EKFs or EnKFs).

 $<sup>^3\</sup>mathrm{Crisan}$  and Míguez, "Nested particle filters for online parameter estimation in discrete-time state-space Markov models" .

<sup>&</sup>lt;sup>4</sup>Pérez-Vieites, Mariño, and Míguez, "Probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems".

<sup>&</sup>lt;sup>5</sup>Pérez-Vieites and Míguez, "Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models". 사용 사용 사용 등 등 19/37

## Family of nested filters

- 1. Nested particle filters (NPFs)<sup>3</sup>.
  - Both layers Sequential Monte Carlo (SMC) methods
- 2. Nested hybrid filters (NHFs)<sup>4</sup>.
  - $\theta$ -layer  $\longrightarrow$  Monte Carlo-based methods (e.g., SMC or SQMC)
  - x-layer → Gaussian techniques (e.g., EKFs or EnKFs)
- 3. Nested Gaussian filters (NGFs)<sup>5</sup>.
  - $\theta$ -layer  $\longrightarrow$  Deterministic sampling methods (e.g., UKF).
  - x-layer  $\longrightarrow$  Gaussian techniques (e.g., EKFs or EnKFs).

 $<sup>^3\</sup>mathrm{Crisan}$  and Míguez, "Nested particle filters for online parameter estimation in discrete-time state-space Markov models".

<sup>&</sup>lt;sup>4</sup>Pérez-Vieites, Mariño, and Míguez, "Probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems".

inference and nonlinear tracking in state space model의.▶ ◀문 ▶ ◀문 ▶ ◀문 ▶ 및 맛으로 19/37

## Family of nested filters

- 1. Nested particle filters (NPFs)<sup>3</sup>.
  - Both layers → Sequential Monte Carlo (SMC) methods
- 2. Nested hybrid filters (NHFs)<sup>4</sup>.
  - $\theta$ -layer  $\longrightarrow$  Monte Carlo-based methods (e.g., SMC or SQMC)
  - x-layer → Gaussian techniques (e.g., EKFs or EnKFs)
- 3. Nested Gaussian filters (NGFs)<sup>5</sup>.
  - $\theta$ -layer  $\longrightarrow$  Deterministic sampling methods (e.g., UKF).
  - x-layer → Gaussian techniques (e.g., EKFs or EnKFs).

<sup>&</sup>lt;sup>3</sup>Crisan and Míguez, "Nested particle filters for online parameter estimation in discrete-time state-space Markov models".

<sup>&</sup>lt;sup>4</sup>Pérez-Vieites, Mariño, and Míguez, "Probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems".

<sup>&</sup>lt;sup>5</sup>Pérez-Vieites and Míguez, "Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models. ▶ ◀ 🗗 ▶ ◀ 🛢 ▶ ◀ 🛢 ▶ 🧵 🕏 ९०० 19/37

### Index

Introduction

State of the Art

#### Nested filters

Model inference Nested hybrid filter (NHF) Nested Gaussian filter (NGF)

Ongoing work

Some numerical results

Conclusions

# Nested hybrid filter (NHF)

### SMC (N samples)

1<sup>st</sup> layer

- Jittering:  $\bar{\boldsymbol{\theta}}_{t}^{i} \sim \kappa_{N}(\boldsymbol{\theta}|d\boldsymbol{\theta}_{t-1}^{i}), 1 \leq i \leq N \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of heta: weights  $w_t^i \longrightarrow p(m{y}_t|ar{m{ heta}}_t^i,m{y}_{1:t-1})$

### EKF (per each sample i)

- Prediction:  $p(\mathbf{x}_t | \bar{\boldsymbol{\theta}}_t^i, \mathbf{y}_{1:t-1}) \approx \mathcal{N}(\mathbf{x}_t | \mathbf{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \mathbf{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Likelihood of  $\theta$  and  $\mathbf{x}_t$ :  $p(\mathbf{y}_t|\mathbf{x}_t, \overline{\theta}_t^i)$  Update:  $p(\mathbf{x}_t|\overline{\theta}_t^i, \mathbf{y}_{1:t}) \approx \mathcal{N}(\mathbf{x}_t|\mathbf{x}_{t|t,\overline{\theta}_t^i}^i, \mathbf{C}_{t|t,\overline{\theta}_t^i}^i)$
- Resampling:  $\{\boldsymbol{\theta}_t^i, \boldsymbol{x}_{t|t,\theta^i}^i, \boldsymbol{C}_{t|t,\theta^i}^i\} \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t})$

### SMC (N samples)

1<sup>st</sup> layer

- Jittering:  $\bar{\boldsymbol{\theta}}_{t}^{i} \sim \kappa_{N}(\boldsymbol{\theta}|d\boldsymbol{\theta}_{t-1}^{i}), 1 \leq i \leq N \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of  $\theta$ : weights  $w_t^i \longrightarrow p(\mathbf{y}_t | \bar{\boldsymbol{\theta}}_t^i, \mathbf{y}_{1:t-1})$

### EKF (per each sample i)

- Prediction:  $p(\mathbf{x}_t|\bar{\boldsymbol{\theta}}_t^i, \mathbf{y}_{1:t-1}) \approx \mathcal{N}(\mathbf{x}_t|\mathbf{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \mathbf{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Likelihood of  $\boldsymbol{\theta}$  and  $\boldsymbol{x}_t$ :  $p(\boldsymbol{y}_t|\boldsymbol{x}_t, \overline{\boldsymbol{\theta}}_t^i)$  Update:  $p(\boldsymbol{x}_t|\overline{\boldsymbol{\theta}}_t^i, \boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t,\overline{\boldsymbol{\theta}}_t^i}^i, \boldsymbol{C}_{t|t,\overline{\boldsymbol{\theta}}_t^i}^i)$
- Resampling:  $\{\boldsymbol{\theta}_t^i, \boldsymbol{x}_{t|t,\theta^i}^i, \boldsymbol{C}_{t|t,\theta^i}^i\} \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t})$

### SMC (N samples)

1<sup>st</sup> layer

- Jittering:  $\bar{\boldsymbol{\theta}}_{t}^{i} \sim \kappa_{N}(\boldsymbol{\theta}|d\boldsymbol{\theta}_{t-1}^{i}), 1 \leq i \leq N \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of  $\theta$ : weights  $w_t^i \longrightarrow p(\mathbf{y}_t | \bar{\boldsymbol{\theta}}_t^i, \mathbf{y}_{1:t-1})$

### EKF (per each sample i)

- Prediction:  $p(\mathbf{x}_t|\bar{\boldsymbol{\theta}}_t^i, \mathbf{y}_{1:t-1}) \approx \mathcal{N}(\mathbf{x}_t|\mathbf{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \mathbf{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Likelihood of  $\boldsymbol{\theta}$  and  $\boldsymbol{x}_t$ :  $p(\boldsymbol{y}_t|\boldsymbol{x}_t, \overline{\boldsymbol{\theta}}_t^i)$  Update:  $p(\boldsymbol{x}_t|\overline{\boldsymbol{\theta}}_t^i, \boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t, \overline{\boldsymbol{\theta}}_t^i}^i, \boldsymbol{C}_{t|t, \overline{\boldsymbol{\theta}}_t^i}^i)$
- Resampling:  $\{\boldsymbol{\theta}_t^i, \boldsymbol{x}_{t|t,\theta^i}^i, \boldsymbol{C}_{t|t,\theta^i}^i\} \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t})$

#### SMC (N samples)

1<sup>st</sup> layer

- Jittering:  $\bar{\boldsymbol{\theta}}_t^i \sim \kappa_N(\boldsymbol{\theta}|d\boldsymbol{\theta}_{t-1}^i), 1 \le i \le N \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of  $\theta$ : weights  $w_t^i \longrightarrow p(\boldsymbol{y}_t|\bar{\boldsymbol{\theta}}_t^i, \boldsymbol{y}_{1:t-1})$

### EKF (per each sample i)

- Prediction:  $p(\boldsymbol{x}_t|\bar{\boldsymbol{\theta}}_t^i, \boldsymbol{y}_{1:t-1}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \boldsymbol{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Likelihood of  $oldsymbol{ heta}$  and  $oldsymbol{x}_t$ :  $p(oldsymbol{y}_t|oldsymbol{x}_t,ar{oldsymbol{ heta}}_t^i)$
- Update:  $p(\boldsymbol{x}_t|\bar{\boldsymbol{\theta}}_t^i, \boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t,\bar{\boldsymbol{\theta}}_t^i}^i, \boldsymbol{C}_{t|t,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Resampling:  $\{\boldsymbol{\theta}_t^i, \boldsymbol{x}_{t|t,\theta^i}^i, \boldsymbol{C}_{t|t,\theta^i_i}^i\} \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t})$

### SMC (N samples)

1<sup>st</sup> layer

- Jittering:  $\bar{\boldsymbol{\theta}}_{t}^{i} \sim \kappa_{N}(\boldsymbol{\theta}|d\boldsymbol{\theta}_{t-1}^{i}), 1 \leq i \leq N \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of  $\theta$ : weights  $w_t^i \longrightarrow p(\boldsymbol{y}_t|\bar{\boldsymbol{\theta}}_t^i, \boldsymbol{y}_{1:t-1})$

### EKF (per each sample i)

- Prediction:  $p(\boldsymbol{x}_t|\bar{\boldsymbol{\theta}}_t^i, \boldsymbol{y}_{1:t-1}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \boldsymbol{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Likelihood of  $oldsymbol{ heta}$  and  $oldsymbol{x}_t$ :  $p(oldsymbol{y}_t|oldsymbol{x}_t,ar{oldsymbol{ heta}}_t^i)$
- Update:  $p(\boldsymbol{x}_t|\bar{\boldsymbol{\theta}}_t^i,\boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t,\bar{\boldsymbol{\theta}}_t^i}^i,\boldsymbol{C}_{t|t,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Resampling:  $\{\boldsymbol{\theta}_t^i, \boldsymbol{x}_{t|t,\theta^i}^i, \boldsymbol{C}_{t|t,\theta^i_i}^i\} \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t})$

### SMC (N samples)

1<sup>st</sup> layer

- Jittering:  $\bar{\boldsymbol{\theta}}_{t}^{i} \sim \kappa_{N}(\boldsymbol{\theta}|d\boldsymbol{\theta}_{t-1}^{i}), 1 \leq i \leq N \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of  $\theta$ : weights  $w_t^i \longrightarrow p(\boldsymbol{y}_t|\bar{\boldsymbol{\theta}}_t^i,\boldsymbol{y}_{1:t-1})$

### EKF (per each sample i)

- Prediction:  $p(\boldsymbol{x}_t|\bar{\boldsymbol{\theta}}_t^i, \boldsymbol{y}_{1:t-1}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \boldsymbol{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Likelihood of  $oldsymbol{ heta}$  and  $oldsymbol{x}_t$ :  $p(oldsymbol{y}_t|oldsymbol{x}_t,ar{oldsymbol{ heta}}_t^i)$
- Update:  $p(\boldsymbol{x}_t|\bar{\boldsymbol{\theta}}_t^i,\boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t,\bar{\boldsymbol{\theta}}_t^i}^i,\boldsymbol{C}_{t|t,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Resampling:  $\{ m{\theta}_t^i, m{x}_{t|t, m{\theta}_t^i}^i, m{C}_{t|t, m{\theta}_t^i}^i \} \longrightarrow p(m{\theta}|m{y}_{1:t})$

# Recursivity of NPF and NHF

- θ is static and samples θ<sup>i</sup><sub>t-1</sub> do not evolve. After several resampling steps the filter would degenerate.
- It is convenient to have a procedure to generate a new set  $\{\bar{\boldsymbol{\theta}}_t^i\}_{1 \leq i \leq N}$  which yields an approximation of  $p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$ .
- → The jittering step allows these filters to run recursively:

We mutate the particles  $\theta_{t-1}^1, \dots, \theta_{t-1}^N$  independently using a jittering kernel  $\kappa_N(\theta|d\theta)$  and obtain  $\bar{\theta}_t^1, \dots, \bar{\theta}_t^N$ .

## Recursivity of NPF and NHF

- $\theta$  is static and samples  $\theta_{t-1}^i$  do not evolve. After several resampling steps the filter would degenerate.
- It is convenient to have a procedure to generate a new set  $\{\bar{\boldsymbol{\theta}}_t^i\}_{1 \leq i \leq N}$  which yields an approximation of  $p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$ .
- → The jittering step allows these filters to run recursively:

We mutate the particles  $\boldsymbol{\theta}_{t-1}^1, \dots, \boldsymbol{\theta}_{t-1}^N$  independently using a jittering kernel  $\kappa_N(\boldsymbol{\theta}|d\boldsymbol{\theta})$  and obtain  $\bar{\boldsymbol{\theta}}_t^1, \dots, \bar{\boldsymbol{\theta}}_t^N$ .

The sequence of posterior probability measures of the unknown parameters,  $p(\theta|\mathbf{y}_{1:t})$ ,  $t \ge 1$ , can be constructed recursively starting from a prior  $p(\theta)$  as

$$p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t}) \propto u_t(\boldsymbol{\theta}) \star p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$$

where  $u_t(\boldsymbol{\theta}) = p(\boldsymbol{y}_t | \boldsymbol{\theta}, \boldsymbol{y}_{1:t-1})$ .

A.1. The estimator  $\hat{u}_t(\theta)$  is random and can be written as

$$\hat{u}_t(\theta) = u_t(\theta) + b_t(\theta) + m_t(\theta).$$

where  $u_t(\theta) \coloneqq p(\mathbf{y}_t | \theta, \mathbf{y}_{1:t-1})$  is the **true likelihood**,  $m_t(\theta)$  is a zero-mean **random variable** with finite variance and  $b_t(\theta)$  is a deterministic and bounded **bias function**.

The sequence of posterior probability measures of the unknown parameters,  $p(\theta|\mathbf{y}_{1:t})$ ,  $t \ge 1$ , can be constructed recursively starting from a prior  $p(\theta)$  as

$$p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t}) \propto u_t(\boldsymbol{\theta}) \star p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$$

where  $u_t(\boldsymbol{\theta}) = \rho(\boldsymbol{y}_t | \boldsymbol{\theta}, \boldsymbol{y}_{1:t-1})$ .

A.1. The estimator  $\hat{u}_t(\theta)$  is random and can be written as

$$\hat{u}_t(\boldsymbol{\theta}) = u_t(\boldsymbol{\theta}) + b_t(\boldsymbol{\theta}) + m_t(\boldsymbol{\theta}),$$

where  $u_t(\theta) \coloneqq p(\mathbf{y}_t | \theta, \mathbf{y}_{1:t-1})$  is the **true likelihood**,  $m_t(\theta)$  is a zero-mean **random variable** with finite variance and  $b_t(\theta)$  is a deterministic and bounded **bias function**.

#### Theorem 1

Let the sequence of observations  $y_{1:t_o}$  be arbitrary but fixed, with  $t_o < \infty$ , and choose an arbitrary function  $h \in B(D)$ . Let  $p^N(d\theta|\mathbf{y}_{1:t}) = \frac{1}{N} \sum_{i=1}^N \delta_{\theta_t^i}(d\theta)$  be the random probability measure in the parameter space generated by the nested filter. If A.1 holds and under regularity conditions, then

$$\|\int h(\boldsymbol{\theta}) p^N (d\boldsymbol{\theta}|\boldsymbol{y}_{1:t}) - \int h(\boldsymbol{\theta}) \bar{p}(\boldsymbol{\theta}|\boldsymbol{y}_{1:t}) d\boldsymbol{\theta}\|_p \leq \frac{c_t \|h\|_{\infty}}{\sqrt{N}},$$

for  $t=0,1,\ldots,t_o$ , where  $\{c_t\}_{0\leq t\leq t_o}$  is a sequence of constants independent of N.  $\square$ 

If, instead of the true likelihood  $u_t(\theta)$ , we use another biased function  $\bar{u}_t(\theta) \neq u_t(\theta)$  to update the posterior probability measure  $p(\theta|\mathbf{y}_{1:t})$ , then we obtain the new sequence of measures

$$\bar{p}(\theta|\mathbf{y}_{1:t}) \propto \bar{u}_t(\theta) \star \bar{p}(\theta|\mathbf{y}_{1:t-1}), \quad t = 1, 2, \dots$$

#### Theorem 1

Let the sequence of observations  $y_{1:t_o}$  be arbitrary but fixed, with  $t_o < \infty$ , and choose an arbitrary function  $h \in B(D)$ . Let  $p^N(d\theta|\mathbf{y}_{1:t}) = \frac{1}{N} \sum_{i=1}^N \delta_{\theta_t^i}(d\theta)$  be the random probability measure in the parameter space generated by the nested filter. If A.1 holds and under regularity conditions, then

$$\|\int h(\boldsymbol{\theta})p^{N}(d\boldsymbol{\theta}|\mathbf{y}_{1:t})-\int h(\boldsymbol{\theta})\bar{p}(\boldsymbol{\theta}|\mathbf{y}_{1:t})d\boldsymbol{\theta}\|_{p}\leq \frac{c_{t}\|h\|_{\infty}}{\sqrt{N}},$$

for  $t=0,1,\ldots,t_o$ , where  $\{c_t\}_{0\leq t\leq t_o}$  is a sequence of constants independent of N.  $\square$ 

If, instead of the true likelihood  $u_t(\theta)$ , we use another biased function  $\bar{u}_t(\theta) \neq u_t(\theta)$  to update the posterior probability measure  $p(\theta|\mathbf{y}_{1:t})$ , then we obtain the new sequence of measures

$$\bar{p}(\boldsymbol{\theta}|\mathbf{y}_{1:t}) \propto \bar{u}_t(\boldsymbol{\theta}) \star \bar{p}(\boldsymbol{\theta}|\mathbf{y}_{1:t-1}), \quad t = 1, 2, \dots$$

### UKF (M sigma-points)

1<sup>st</sup> layer

- Generate sigma-points:  $\{\boldsymbol{\theta}_t^i, w_t^i\}, 0 \le i \le M-1 \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of  $\theta \longrightarrow p(\mathbf{y}_t | \boldsymbol{\theta}_t^i, \mathbf{y}_{1:t-1})$

### EKF (per each sample sigma-point i)

nd layer

- Prediction:  $p(\mathbf{x}_t | \boldsymbol{\theta}_t^i, \mathbf{y}_{1:t-1}) \approx \mathcal{N}(\mathbf{x}_t | \mathbf{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \boldsymbol{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Likelihood of heta and  $extbf{x}_t$ :  $p( extbf{y}_t| extbf{x}_t, heta_t^i)$
- Update:  $p(\mathbf{x}_t|\boldsymbol{\theta}_t^i, \mathbf{y}_{1:t}) \approx \mathcal{N}(\mathbf{x}_t|\mathbf{x}_{t|t,\theta_t^i}^i, \boldsymbol{C}_{t|t,\theta_t^i}^i)$
- Compute  $\hat{\boldsymbol{\theta}}_t^i$  and  $\hat{\boldsymbol{C}}_t^{\theta} \longrightarrow p(\theta|\boldsymbol{y}_{1:t}) \approx \mathcal{N}(\theta_t|\hat{\boldsymbol{\theta}}_t^i,\hat{\boldsymbol{C}}_t^{\theta})$

### UKF (M sigma-points)

1<sup>st</sup> layer

- Generate sigma-points:  $\{\boldsymbol{\theta}_t^i, w_t^i\}, 0 \le i \le M-1 \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of  $heta \longrightarrow p(oldsymbol{y}_t|oldsymbol{ heta}_t^i,oldsymbol{y}_{1:t-1})$

### EKF (per each sample sigma-point i)

nd layer

- Prediction:  $p(\mathbf{x}_t | \boldsymbol{\theta}_t^i, \mathbf{y}_{1:t-1}) \approx \mathcal{N}(\mathbf{x}_t | \mathbf{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \boldsymbol{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i)$
- Likelihood of heta and  $extbf{x}_t$ :  $p( extbf{y}_t| extbf{x}_t, heta_t^i)$
- Update:  $p(\mathbf{x}_t|\boldsymbol{\theta}_t^i, \mathbf{y}_{1:t}) \approx \mathcal{N}(\mathbf{x}_t|\mathbf{x}_{t|t,\theta_t^i}^i, \boldsymbol{C}_{t|t,\theta_t^i}^i)$
- Compute  $\hat{\boldsymbol{\theta}}_t^i$  and  $\hat{\boldsymbol{C}}_t^{\theta} \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{\theta}_t|\hat{\boldsymbol{\theta}}_t^i, \hat{\boldsymbol{C}}_t^{\theta})$

### UKF (M sigma-points)

1<sup>st</sup> layer

- Generate sigma-points:  $\{\boldsymbol{\theta}_t^i, w_t^i\}, 0 \le i \le M-1 \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of  $heta \longrightarrow p(oldsymbol{y}_t|oldsymbol{ heta}_t^i,oldsymbol{y}_{1:t-1})$

EKF (per each sample sigma-point i)

- Prediction:  $p(\mathbf{x}_t | \boldsymbol{\theta}_t^i, \mathbf{y}_{1:t-1}) \approx \mathcal{N}(\mathbf{x}_t | \mathbf{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \overline{\boldsymbol{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i})$
- Likelihood of  $oldsymbol{ heta}$  and  $oldsymbol{x}_t$ :  $p(oldsymbol{y}_t|oldsymbol{x}_t,oldsymbol{ heta}_t^i)$
- Update:  $p(\boldsymbol{x}_t|\boldsymbol{\theta}_t^i, \boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t,\boldsymbol{\theta}_t^i}^i, \boldsymbol{C}_{t|t,\boldsymbol{\theta}_t^i}^i)$
- Compute  $\hat{\boldsymbol{\theta}}_t^i$  and  $\hat{\boldsymbol{C}}_t^{\theta} \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{\theta}_t|\hat{\boldsymbol{\theta}}_t^i, \hat{\boldsymbol{C}}_t^{\theta})$

### UKF (M sigma-points)

1<sup>st</sup> layer

- Generate sigma-points:  $\{\boldsymbol{\theta}_t^i, w_t^i\}, 0 \le i \le M-1 \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t-1})$
- Likelihood of  $\theta \longrightarrow p(\boldsymbol{y}_t | \boldsymbol{\theta}_t^i, \boldsymbol{y}_{1:t-1})$

EKF (per each sample sigma-point i)

- Prediction:  $p(\mathbf{x}_t | \boldsymbol{\theta}_t^i, \mathbf{y}_{1:t-1}) \approx \mathcal{N}(\mathbf{x}_t | \mathbf{x}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i, \overline{\boldsymbol{C}_{t|t-1,\bar{\boldsymbol{\theta}}_t^i}^i})$
- Likelihood of  $oldsymbol{ heta}$  and  $oldsymbol{x}_t$ :  $p(oldsymbol{y}_t|oldsymbol{x}_t,oldsymbol{ heta}_t^i)$
- Update:  $p(\boldsymbol{x}_t|\boldsymbol{\theta}_t^i, \boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{x}_t|\boldsymbol{x}_{t|t,\boldsymbol{\theta}_t^i}^i, \boldsymbol{C}_{t|t,\boldsymbol{\theta}_t^i}^i)$
- Compute  $\hat{\boldsymbol{\theta}}_t^i$  and  $\hat{\boldsymbol{C}}_t^{\theta} \longrightarrow p(\boldsymbol{\theta}|\boldsymbol{y}_{1:t}) \approx \mathcal{N}(\boldsymbol{\theta}_t|\hat{\boldsymbol{\theta}}_t^i, \hat{\boldsymbol{C}}_t^{\theta})$

# Recursivity of NGF

- → This filter is **not recursive**.
  - As every time step t the **sigma-points**  $\theta_t^i$  are recalculated, the computations of the second layer need to **start from scratch**.
  - In order to make it recursive we approximate

$$p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1}, \mathbf{\theta}_t^i) \approx p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1}, \mathbf{\theta}_{t-1}^i).$$

### Recursive NGF

Every time step the norm  $\|\boldsymbol{\theta}_t^i - \boldsymbol{\theta}_{t-1}^i\|_p$  is computed and compared against a prescribed relative **threshold**  $\lambda > 0$ .

- If  $\| \theta_t^i \theta_{t-1}^i \|_p < \lambda \| \theta_{t-1}^i \|_p$ , we assume  $p(\mathbf{x}_{t-1} | \mathbf{y}_{1:t-1}, \mathbf{\theta}_t^i) \approx p(\mathbf{x}_{t-1} | \mathbf{y}_{1:t-1}, \mathbf{\theta}_{t-1}^i)$ .
- If  $\|\boldsymbol{\theta}_t^i \boldsymbol{\theta}_{t-1}^i\|_p > \lambda \|\boldsymbol{\theta}_{t-1}^i\|_p$ , we need to compute the pdf  $p(\boldsymbol{x}_{t-1}|\boldsymbol{y}_{1:t-1},\boldsymbol{\theta}_t^i)$  from the prior  $p(\boldsymbol{x}_0)$ .

## Index

Introduction

State of the Ar

Nested filter

Model inference
Nested hybrid filter (NHF)

Ongoing work

Some numerical results

Conclusion



## Ongoing work

Focusing on an efficient use of the available computational resources.

- Reduction of the number of  $\theta$ -samples when the filter converges [Accepted paper, ICASSP 2023]<sup>6</sup>.
- Adapting the number of samples of each layer online
  - $\longrightarrow$  Further study of  $p(\mathbf{y}_t|\mathbf{y}_{1:t-1},\theta)$ .

<sup>&</sup>lt;sup>6</sup>Pérez-Vieites and Elvira, "Adaptive Gaussian nested filter for parameter estimation and state tracking in dynamical systems": 🗆 ト 🕯 🖹 ト 🍕 🕒 🚊 🔊 ९० 🖰 29/37

## Index

Introduction

State of the Ar

Nested filter

Model inference
Nested hybrid filter (NHF)

Ongoing work

Some numerical results

Conclusion



### The Lorenz 63 model

We consider a stochastic Lorenz 63 model, whose dynamics are described by

- the state variables x<sub>t</sub> with dimension d<sub>x</sub> = 3,
- the static parameters  $\theta = [S, R, B]^{\mathsf{T}}$  and
- the following SDEs

$$dx_1 = [-S(x_1 - x_2)]d\tau + \sigma dv_1,$$
  

$$dx_2 = [Rx_1 - x_2 - x_1x_3]d\tau + \sigma dv_2,$$
  

$$dx_3 = [x_1x_2 - Bx_3]d\tau + \sigma dv_3,$$



### The Lorenz 63 model

• Applying a discretization method with step  $\Delta$ , we obtain

$$\begin{split} x_{1,t+1} &= x_{1,t} - \Delta S(x_{1,t} - x_{2,t}) + \sqrt{\Delta} \sigma v_{1,t}, \\ x_{2,t+1} &= x_{2,t} + \Delta \left[ (R - x_{3,t}) x_{1,t} - x_{2,t} \right] + \sqrt{\Delta} \sigma v_{2,t}, \\ x_{3,t+1} &= x_{3,t} + \Delta (x_{1,t} x_{2,t} - B x_{3,t}) + \sqrt{\Delta} \sigma v_{3,t}, \end{split}$$

We assume linear observations of the form

$$\boldsymbol{y}_t = k_o \begin{bmatrix} x_{1,t} \\ x_{3,t} \end{bmatrix} + \boldsymbol{r}_t,$$

where  $k_o$  is a fixed known parameter and  $\mathbf{r}_t \sim \mathcal{N}(\mathbf{r}_t | \mathbf{0}, \sigma_v^2 \mathbf{I}_2)$ .

## Numerical results [Signal Processing 2021]<sup>7</sup>



- → The nested schemes outperform the augmented-state methods.
- → The UKF-EKF is three times faster than SMC-EKF.

<sup>&</sup>lt;sup>7</sup>Pérez-Vieites and Míguez, "Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models". ▶ ◀ 🗗 ▶ ◀ 🛢 ▶ 🔞 👻 ୬ ९ ৫ 33/37

# Numerical results [ICASSP 2023]<sup>8</sup>



- 1. NGF: QKF-EKF with different number of points/samples,  $N_{\theta}$  (the greater  $\alpha$ , the greater  $N_{\theta}$ .
- 2. Adaptive Gaussian nested filter (AGNesF).

## Index

Introductio

State of the Ar

Nested filter

Model inference Nested hybrid filter (NHF)

Ongoing work

Some numerical results

Conclusions



### Conclusions

#### We have introduced a generalized nested methodology

- 1. that is flexible. It admits different types of filtering techniques in each layer, leading to a **set of algorithms**.
- 2. that works recursively.
- 3. with theoretical guarantees (under general assumptions).

### Open to collaborate and discuss possible applications!

- Time-series problems with availability of relatively frequent observations / data
- e.g., remote sensing, energy, ecology, but not only

### Conclusions

#### We have introduced a generalized nested methodology

- 1. that is flexible. It admits different types of filtering techniques in each layer, leading to a **set of algorithms**.
- 2. that works recursively.
- 3. with theoretical guarantees (under general assumptions).

### Open to collaborate and discuss possible applications!

- Time-series problems with availability of relatively frequent observations / data
- e.g., remote sensing, energy, ecology, but not only

## Thank you!

- Pérez-Vieites & Elvira (2023). Adaptive Gaussian nested filter for parameter estimation and state tracking in dynamical systems. In ICASSP 2023 [Accepted].
- Pérez-Vieites, Molina-Bulla & Míguez (2022). Nested smoothing algorithms for inference and tracking of heterogeneous multi-scale state-space systems. arXiv preprint arXiv:2204.07795.
- Pérez-Vieites & Míguez (2021). Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models. Signal Processing, 189, 108295.
- Pérez-Vieites & Míguez (2020). A nested hybrid filter for parameter estimation and state tracking in homogeneous multi-scale models. In FUSION 2020 (pp. 1-8). IEEE.
- Pérez-Vieites & Míguez (2020). Kalman-based nested hybrid filters for recursive inference in state-space models. In EUSIPCO 2020 (pp. 2468-2472). IEEE.
- Pérez-Vieites, Vilà-Vals, Bugallo, Míguez & Closas (2019).
   Second Order Subspace Statistics for Adaptive State-Space Partitioning in Multiple Particle Filtering. In CAMSAP 2019 (pp. 609-613). IEEE.
- Pérez-Vieites, Mariño & Míguez (2018). Probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems. Physical Review E, 98(6), 063305.



### sarapv.github.io

sara.perez-vieites@imtnord-europe.fr