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Sara Pérez Vieites
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Introduction
We aim at estimating the time evolution of dynamical systems of
different fields of science, such as:

● Geophysics. Prediction of the weather, ice sea changes, climate
(i.e. fluid dynamics).

● Biochemistry. Prediction of the interactions and population of
certain molecules.

● Ecology. Prediction of the population of prey and predator species
in certain region.

● Quantitative finance. Evaluation/estimation of price options and
risk.

● Engineering. Object/target tracking for applications such as
surveillance or air traffic control.

● . . .

Ð→ There are plenty of applications where the estimation of a dynamical
system is needed.
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State-space model

These systems can be represented by Markov state-space dynamical
models:

x0 x1 x2 x t

y 1 y 2 y t

θ θ θ

θθ θ
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State-space model

The state (x t), the observations (y t) and the parameters (θ) of these
state-space systems are related following the equations

x t = f (x t−1,θ) + v t ,

y t = g(x t ,θ) + r t ,

- f and g are the state
transition function and the
observation function

- v t and r t are state and
observation noises

In terms of a set of relevant probability density functions (pdfs):

● Prior pdfs: θ ∼ p(θ) and x0 ∼ p(x0)
● Transition pdf of the state: x t ∼ p(x t ∣x t−1,θ)
● Conditional pdf of the observation: y t ∼ p(y t ∣x t ,θ)
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State estimation

Ð→ Goal: Bayesian estimation of the state variables, p(x t ∣y 1∶t ,θ).

Classical filtering methods assume θ is known, and compute

Predictive pdf
p(x t ∣y 1∶t−1,θ)

Likelihood
p(y t ∣x t ,θ)

Posterior pdf
p(x t ∣y 1∶t ,θ)

y t

t
←Ð

t
+
1

Both p(x t ∣x t−1,θ) and p(y t ∣x t ,θ) are described by the model.

Ð→ Usually θ is not given and it needs to be estimated as well.
Therefore, we are interested in both parameter and state estimation.
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Previous post. pdf
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State-of-the-art methods
for parameter and state estimation

1. State augmentation methods with artificial dynamics

Predictive pdf
p(x̃ t ∣y 1∶t−1)

Likelihood
p(y t ∣x̃ t)

Posterior pdf
p(x̃ t ∣y 1∶t)

y t

t
←Ð

t
+
1

● Use of an extended state
vector x̃ t = [x t ,θt]⊺.

● Artificial dynamics are
introduced in θ to avoid
degeneracy.

● Easy to apply but the
artifical dynamics might
introduce bias and the
method lacks theoretical
guarantees.
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State-of-the-art methods
for parameter and state estimation

2. Particle learning (PL) techniques

● It is a sampling-resampling scheme.
● It depends only on a set of finite-dimensional statistics. In a

Monte Carlo setting this means that the static parameters can
be efficiently represented by sampling.

● The posterior probability distribution of θ conditional on the
states x0, . . . ,x t can be computed in closed form.

● However, this approach is restricted to very specific models.
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State-of-the-art methods
for parameter and state estimation

3. Recursive maximum likelihood (RML) methods

● They enable the sequential processing of the observed data as
they are collected.

● They are well-principled.
● They can be applied to a broad class of models.
● However, they do not yield full posterior distributions of the

unknowns and therefore, they only output point estimates
instead.
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State-of-the-art methods
for parameter and state estimation

4. There have been advances leading to methods that

● aim at calculating the posterior probability distribution of
the unknown variables and parameters of the models and
they can quantify the uncertainty or estimation error.

● can be applied to a broad class of models.
● are well-principled probabilistic methods with theoretical

guarantees.
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State-of-the-art methods
for parameter and state estimation

Some examples are:

● particle Markov chain Monte Carlo (PMCMC)1

● sequential Monte Carlo square (SMC2)2

Ð→ they are batch techniques: the whole sequence of observations
has to to be re-processed from scratch.

Ð→ The computational cost becomes prohibitive in
high-dimensional problems.

1Andrieu, Doucet, and Holenstein, “Particle Markov chain Monte Carlo methods”.
2Chopin, Jacob, and Papaspiliopoulos, “SMC2: A sequential Monte Carlo

algorithm with particle Markov chain Monte Carlo updates”.
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Summary and Motivation

The state-of-the-art methods have one or more of the following issues:

● Lack of theoretical guarantees.

● Restricted to very specific models.

● Estimation error not quantified (it only provides point estimates).

● Batch technique (the whole sequence of observations have to be
re-processed from scratch every time step).

● Prohibitive computational cost for high-dimensional problems.

Ð→ We propose a set of algorithms that estimate the joint posterior
probability distribution of the parameters and the state, while
solving all the issues.
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Model inference

We aim at computing the joint posterior pdf p(θ,x t ∣y 1∶t), that can be
written as

p(θ,x t ∣y 1∶t) = p(x t ∣θ,y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2nd layer

p(θ∣y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1st layer

Ð→ The key difficulty in this class of models is the Bayesian estimation
of the parameter vector θ.
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1st layer of inference

Predictive pdf
p(θ∣y 1∶t−1)

Likelihood
p(y t ∣θ,y 1∶t−1)

Posterior pdf
p(θ∣y 1∶t)

y t

The posterior pdf can be written as

p(θ∣y 1∶t) ∝ p(y t ∣θ,y 1∶t−1)p(θ∣y 1∶t−1)

t
←Ð

t
+
1



17/37

Introduction State of the Art Nested filters Ongoing work Some numerical results Conclusions

1st layer of inference

Predictive pdf
p(θ∣y 1∶t−1)

Likelihood
p(y t ∣θ,y 1∶t−1)

Posterior pdf
p(θ∣y 1∶t)

y t

The posterior pdf can be written as

p(θ∣y 1∶t) ∝ p(y t ∣θ,y 1∶t−1)p(θ∣y 1∶t−1)

t
←Ð

t
+
1



17/37

Introduction State of the Art Nested filters Ongoing work Some numerical results Conclusions

1st layer of inference

Predictive pdf
p(θ∣y 1∶t−1)

Likelihood
p(y t ∣θ,y 1∶t−1)

Posterior pdf
p(θ∣y 1∶t)

y t

The posterior pdf can be written as

p(θ∣y 1∶t) ∝ p(y t ∣θ,y 1∶t−1)p(θ∣y 1∶t−1)

t
←Ð

t
+
1



17/37

Introduction State of the Art Nested filters Ongoing work Some numerical results Conclusions

1st layer of inference

Predictive pdf
p(θ∣y 1∶t−1)

Likelihood
p(y t ∣θ,y 1∶t−1)

Posterior pdf
p(θ∣y 1∶t)

y t

The posterior pdf can be written as

p(θ∣y 1∶t) ∝ p(y t ∣θ,y 1∶t−1)p(θ∣y 1∶t−1)

where

p(y t ∣θ,y 1∶t−1) =

∫ p(y t ∣x t ,θ)p(x t ∣θ,y 1∶t−1)dx t

t
←Ð

t
+
1



17/37

Introduction State of the Art Nested filters Ongoing work Some numerical results Conclusions

1st layer of inference

Predictive pdf
p(θ∣y 1∶t−1)

Likelihood
p(y t ∣θ,y 1∶t−1)

Posterior pdf
p(θ∣y 1∶t)

y t

The posterior pdf can be written as

p(θ∣y 1∶t) ∝ p(y t ∣θ,y 1∶t−1)p(θ∣y 1∶t−1)

where

p(y t ∣θ,y 1∶t−1) =

∫ p(y t ∣x t ,θ)
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Likelihood (2nd layer)

Pred. pdf (2nd layer)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p(x t ∣θ,y 1∶t−1) dx t

t
←Ð

t
+
1
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Model inference

p(θ∣y 1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pred. pdf of θ

p(y t ∣θ,y 1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Likelihood of θ

= ∫ p(y t ∣x t ,θ)p(x t ∣θ,y 1∶t−1)dx t

p(θ∣y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Post. pdf of θ

∝ p(y t ∣θ,y 1∶t−1)p(θ∣y 1∶t−1)

p(x t ∣θ,y 1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Pred. pdf of x

= ∫ p(x t ∣x t−1,θ)p(x t−1∣θ,y 1∶t−1)dx t−1

p(y t ∣x t ,θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Likelihood of x

p(x t ∣θ,y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Post. pdf of x

∝ p(y t ∣x t ,θ)p(x t ∣θ,y 1∶t−1)

1st layer

2nd layer



19/37

Introduction State of the Art Nested filters Ongoing work Some numerical results Conclusions

Family of nested filters

1. Nested particle filters (NPFs)3.

● Both layers Ð→ Sequential Monte Carlo (SMC) methods

2. Nested hybrid filters (NHFs)4.

● θ-layer Ð→ Monte Carlo-based methods (e.g., SMC or SQMC)
● x-layer Ð→ Gaussian techniques (e.g., EKFs or EnKFs)

3. Nested Gaussian filters (NGFs)5.

● θ-layer Ð→ Deterministic sampling methods (e.g., UKF).
● x-layer Ð→ Gaussian techniques (e.g., EKFs or EnKFs).

3Crisan and Mı́guez, “Nested particle filters for online parameter estimation in
discrete-time state-space Markov models”.

4Pérez-Vieites, Mariño, and Mı́guez, “Probabilistic scheme for joint parameter
estimation and state prediction in complex dynamical systems”.

5Pérez-Vieites and Mı́guez, “Nested Gaussian filters for recursive Bayesian
inference and nonlinear tracking in state space models”.
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Nested hybrid filter (NHF)

SMC (N samples)

- Jittering: θ̄
i
t ∼ κN(θ∣dθi

t−1),1 ≤ i ≤ N Ð→ p(θ∣y 1∶t−1)

- Likelihood of θ: weights w i
t Ð→ p(y t ∣θ̄

i
t ,y 1∶t−1)

- Resampling: {θi
t ,x i

t∣t,θi
t
,C i

t∣t,θi
t
} Ð→ p(θ∣y 1∶t)

EKF (per each sample i)

- Prediction: p(x t ∣θ̄
i
t ,y 1∶t−1) ≈ N(x t ∣x i

t∣t−1,θ̄
i
t

,C i

t∣t−1,θ̄
i
t

)

- Likelihood of θ and x t : p(y t ∣x t , θ̄
i
t)

- Update: p(x t ∣θ̄
i
t ,y 1∶t) ≈ N(x t ∣x i

t∣t,θ̄
i
t

,C i

t∣t,θ̄
i
t

)

1st layer

2nd layer
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Nested hybrid filter (NHF)
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Recursivity of NPF and NHF

● θ is static and samples θi
t−1 do not evolve. After several

resampling steps the filter would degenerate.

● It is convenient to have a procedure to generate a new set

{θ̄i
t}1≤i≤N which yields an approximation of p(θ∣y 1∶t−1).

Ð→ The jittering step allows these filters to run recursively:

We mutate the particles θ1
t−1, . . . ,θ

N
t−1 independently using a

jittering kernel κN(θ∣dθ) and obtain θ̄
1
t , . . . , θ̄

N
t .
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Convergence Theorem (NHF)

The sequence of posterior probability measures of the unknown
parameters, p(θ∣y 1∶t), t ≥ 1, can be constructed recursively starting from
a prior p(θ) as

p(θ∣y 1∶t) ∝ ut(θ) ⋆ p(θ∣y 1∶t−1)

where ut(θ) = p(y t ∣θ,y 1∶t−1).

A.1. The estimator ût(θ) is random and can be written as

ût(θ) = ut(θ) + bt(θ) +mt(θ),

where ut(θ) ∶= p(y t ∣θ,y 1∶t−1) is the true likelihood, mt(θ) is a
zero-mean random variable with finite variance and bt(θ) is a
deterministic and bounded bias function.
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Convergence Theorem (NHF)

Theorem 1
Let the sequence of observations y1∶to be arbitrary but fixed, with to < ∞, and choose
an arbitrary function h ∈ B(D). Let pN(dθ∣y1∶t) = 1

N ∑
N
i=1 δθi

t
(dθ) be the random

probability measure in the parameter space generated by the nested filter. If A.1 holds
and under regularity conditions, then

∥∫ h(θ)pN(dθ∣y1∶t) − ∫ h(θ)p̄(θ∣y1∶t)dθ∥p ≤
ct∥h∥∞√

N
,

for t = 0,1, . . . , to , where {ct}0≤t≤to is a sequence of constants independent of N. ◻

If, instead of the true likelihood ut(θ), we use another biased function
ūt(θ) ≠ ut(θ) to update the posterior probability measure p(θ∣y1∶t), then we
obtain the new sequence of measures

p̄(θ∣y1∶t) ∝ ūt(θ) ⋆ p̄(θ∣y1∶t−1), t = 1,2, . . .
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Nested Gaussian filter (NGF)

UKF (M sigma-points)

- Generate sigma-points: {θi
t ,w

i
t},0 ≤ i ≤M − 1Ð→ p(θ∣y 1∶t−1)

- Likelihood of θ Ð→ p(y t ∣θ
i
t ,y 1∶t−1)

- Compute θ̂
i

t and Ĉ
θ

t Ð→ p(θ∣y 1∶t) ≈ N(θt ∣θ̂
i

t , Ĉ
θ

t )

EKF (per each sample sigma-point i)

- Prediction: p(x t ∣θi
t ,y 1∶t−1) ≈ N(x t ∣x i

t∣t−1,θ̄
i
t

,C i

t∣t−1,θ̄
i
t

)

- Likelihood of θ and x t : p(y t ∣x t ,θ
i
t)

- Update: p(x t ∣θi
t ,y 1∶t) ≈ N(x t ∣x i

t∣t,θi
t
,C i

t∣t,θi
t
)

1st layer

2nd layer
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θ

t Ð→ p(θ∣y 1∶t) ≈ N(θt ∣θ̂
i

t , Ĉ
θ

t )

EKF (per each sample sigma-point i)

- Prediction: p(x t ∣θi
t ,y 1∶t−1) ≈ N(x t ∣x i

t∣t−1,θ̄
i
t

,C i

t∣t−1,θ̄
i
t

)

- Likelihood of θ and x t : p(y t ∣x t ,θ
i
t)

- Update: p(x t ∣θi
t ,y 1∶t) ≈ N(x t ∣x i

t∣t,θi
t
,C i

t∣t,θi
t
)

1st layer

2nd layer



25/37

Introduction State of the Art Nested filters Ongoing work Some numerical results Conclusions

Nested Gaussian filter (NGF)

UKF (M sigma-points)

- Generate sigma-points: {θi
t ,w

i
t},0 ≤ i ≤M − 1Ð→ p(θ∣y 1∶t−1)

- Likelihood of θ Ð→ p(y t ∣θ
i
t ,y 1∶t−1)

- Compute θ̂
i

t and Ĉ
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Recursivity of NGF

Ð→ This filter is not recursive.

● As every time step t the sigma-points θi
t are recalculated, the

computations of the second layer need to start from scratch.

● In order to make it recursive we approximate

p(x t−1∣y 1∶t−1,θ
i
t) ≈ p(x t−1∣y 1∶t−1,θ

i
t−1).
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Recursive NGF

Every time step the norm ∥ θi
t − θi

t−1 ∥p is computed and
compared against a prescribed relative threshold λ > 0.

● If ∥ θi
t − θi

t−1 ∥p< λ ∥ θi
t−1 ∥p,

we assume p(x t−1∣y1∶t−1,θ
i
t) ≈ p(x t−1∣y1∶t−1,θ

i
t−1).

● If ∥ θi
t − θi

t−1 ∥p> λ ∥ θi
t−1 ∥p,

we need to compute the pdf p(x t−1∣y1∶t−1,θ
i
t) from the prior

p(x0).
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Ongoing work

Focusing on an efficient use of the available computational resources.

● Reduction of the number of θ-samples when the filter converges
[Accepted paper, ICASSP 2023]6.

● Adapting the number of samples of each layer online

Ð→ Further study of p(y t ∣y 1∶t−1,θ).

6Pérez-Vieites and Elvira, “Adaptive Gaussian nested filter for parameter
estimation and state tracking in dynamical systems”.
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The Lorenz 63 model

We consider a stochastic Lorenz 63 model, whose dynamics are described
by
● the state variables x t with

dimension dx = 3,
● the static parameters

θ = [S ,R,B]⊺ and

● the following SDEs

dx1 = [−S(x1 − x2)]dτ + σdv1,
dx2 = [Rx1 − x2 − x1x3]dτ + σdv2,
dx3 = [x1x2 −Bx3]dτ + σdv3,
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The Lorenz 63 model

● Applying a discretization method with step ∆, we obtain

x1,t+1 = x1,t −∆S(x1,t − x2,t) +
√
∆σv1,t ,

x2,t+1 = x2,t +∆[(R − x3,t)x1,t − x2,t] +
√
∆σv2,t ,

x3,t+1 = x3,t +∆(x1,tx2,t −Bx3,t) +
√
∆σv3,t ,

● We assume linear observations of the form

y t = ko [
x1,t
x3,t
] + r t ,

where ko is a fixed known parameter and r t ∼ N(r t ∣0, σ2
y I 2).
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Numerical results [Signal Processing 2021]7
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Ð→ The nested schemes outperform the augmented-state methods.

Ð→ The UKF-EKF is three times faster than SMC-EKF.

7Pérez-Vieites and Mı́guez, “Nested Gaussian filters for recursive Bayesian
inference and nonlinear tracking in state space models”.
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Numerical results [ICASSP 2023]8
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1. NGF: QKF-EKF with different number of points/samples, Nθ (the
greater α, the greater Nθ.

2. Adaptive Gaussian nested filter (AGNesF).

8Pérez-Vieites and Elvira, “Adaptive Gaussian nested filter for parameter
estimation and state tracking in dynamical systems”.
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Conclusions

We have introduced a generalized nested methodology

1. that is flexible. It admits different types of filtering techniques in
each layer, leading to a set of algorithms.

2. that works recursively.

3. with theoretical guarantees (under general assumptions).

Open to collaborate and discuss possible applications !

- Time-series problems with availability of relatively frequent
observations / data

- e.g., remote sensing, energy, ecology, but not only
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Thank you!
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