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State-space model

We are interested in systems can be represented by Markov state-space

dynamical models:

(state) x t = f (x t−1,θ) + v t ,

(observation) y t = g(x t ,θ) + r t ,

In terms of a set of relevant probability density functions (pdfs):

θ ∼ p(θ) and x0 ∼ p(x0) (1)

x t ∼ p(x t ∣x t−1,θ) (2)

y t ∼ p(y t ∣x t ,θ) (3)
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Goal

Ð→ We want to approximate the joint posterior distribution of θ
and x t , i.e., p(x t ,θ∣y 1∶t).

Ð→ For a long sequence of observations, i.e., online.
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State-of-the-art methods

Methods for Bayesian inference of both θ and x t :

● particle Markov chain Monte Carlo (PMCMC)1

● sequential Monte Carlo square (SMC2)2

● nested particle filters (NPFs)3

Ð→ They can quantify the uncertainty or estimation error.
Ð→ They can be applied to a broad class of models.
Ð→ They provide theoretical guarantees.
Ð→ Both PMCMC and SMC2 are batch techniques, while the NPF

is a recursive method.

1Andrieu, Doucet, and Holenstein 2010.
2Chopin, Jacob, and Papaspiliopoulos 2013.
3Crisan and Mı́guez 2018.
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Nested filtering

We aim at computing the joint posterior pdf p(θ,x t ∣y 1∶t), as

p(x t ,θ∣y 1∶t) = p(x t ∣θ,y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2nd layer

p(θ∣y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1st layer
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Nested filtering
At every time step t:

p(θ∣y1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pred. pdf of θ

p(y t ∣θ, y1∶t−1)

p(θ∣y1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Post. pdf of θ

∝ p(y t ∣θ, y1∶t−1)p(θ∣y1∶t−1)

1st layer

2nd layer
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Posterior pdf of x : p(x t ∣y1∶t ,θ)

1st layer
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Nested particle filter (NPF)4

For i = 1, . . . ,N: SMC (N samples)
to approximate p(θ∣y1∶t)

SMC (M samples)

to approximate p(y t ∣y1∶t−1, θ̄
i
t)

Given θ̄
i
t , for j = 1, . . . ,M:

- Jittering: Draw θ̄
i
t ∼ κN(dθ∣θi

t−1)

- Weights of θ̄
i
t : w̃ i

t = 1
M ∑

M
j=1 ũ

i,j
t

- Resampling: for l = 1, . . . ,N, {θi
t ,{x

i,j
t }1≤j≤M} = {θ̄

l
t ,{x̃

l,j
t }1≤j≤M}

with prob. w l
t , so that p(θ∣y1∶t) = 1

N ∑
N
i=1 δθi

t
(dθ)

- Draw x̄ i,j
t ∼ p(x t ∣x i,j

t−1, θ̄
i
t)

- Weights: ũi,jt ∝ p(y t ∣x̄
i,j
t , θ̄

i
t)

- Resampling: for m = 1, . . . ,M, x̃ i,j
t = x̄ i,m

t

with probability ui,mt = ũi,mt

∑M
j=1

ũi,jt

4Crisan and Miguez 2017.
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Jittering

● NPF Ð→ jittering: θ̄
i
t ∼ κN(dθ∣θ′), where

κN(dθ∣θ′) = (1 − ϵN)δθ′(θ) + ϵNκ(dθ∣θ′)

● 0 < ϵN ≤ 1√
N

● κ(dθ∣θ′) is an arbitrary Markov kernel with mean θ′ and finite
variance, e.g., κ(dθ∣θ′) = N(θ∣θ′, σ̃2I), with σ̃2 < ∞.

● Guarantees convergence to the true posterior when N Ð→∞
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Take-aways

Advantages:

● Only framework that is online and Bayesian on θ

● Applicable to general parametric state-space models

● Asymptotic convergence guarantees

Limitations:

● Covergence speed might be slow (depends on the jittering (hyper)parameters)

● This problem gets worse as the dimension of θ increases
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Langevin nested particle filter (LNPF)

Iteratively, move the parameters towards areas of higher probability with the
Unadjusted Langevin algorithm (ULA):

θl
t,k+1 = θ

l
t,k + γk ⋅ ∇θ log p(θ ∣ y1∶t)∣

θ=θl
t,k

+
√
2γkvk , (4)

where vk ∼ N(0, I dθ ), γk > 0 is a step size sequence.

We replace jittering by ULA:

(jittering) θ̄
i
t ∼ κNPF (dθ∣θ′) = (1 − ϵN)δθ′(θ) + ϵN κjitter (dθ∣θ′) (5)

(ULA) θ̄
i
t ∼ κLNPF (dθ∣θ′) = (1 − ϵN)δθ′(θ) + ϵN κULA(dθ∣θ′) (6)

*(ULA needs to adjust number of iterations and step size)
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Challenges: intractable score

The gradient of interest includes the score, that is intractable and its
computation is not recursive.

∇θ log p(θ ∣ y 1∶t) = ∇θ log p(y 1∶t ∣θ) + ∇θ log p(θ) (7)

Ð→ Using Fisher’s identity we have two approximations5

O(N): ∇θ log p(y 1∶t ∣ θ) = ∫ ∇θ log p(y 1∶t ,x1∶t ∣ θ)p(x1∶t ∣ y 1∶t ,θ)dx1∶t

O(N2): ∇θ log p(y 1∶t ∣ θ) = ∫ ∇θ log p(y 1∶t ,x t ∣ θ)p(x t ∣ y 1∶t ,θ)dx t

*(This is described for a fixed θ)

5Poyiadjis, Doucet, and Singh 2011.
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Challenges: recursive approximation

Ð→ Approximation used in the recursive maximum likelihood literature6,
such that

∇θ log p(y 1∶t ∣θ) is replaced by ∇θ log p(y t ∣ y 1∶t−1,θ),

and it can be computed as

∇θ log p(y t ∣ y 1∶t−1,θ)
RRRRRRRRRRRθ=θt

= ∇θ log p(y 1∶t ∣θ)
RRRRRRRRRRRθ=θ1∶t

−∇θ log p(y 1∶t−1∣θ)
RRRRRRRRRRRθ=θ1∶t−1

*(We are assuming that process y t is ergodic)

6Chopin, Papaspiliopoulos, et al. 2020.
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Conclusions

● Jittering can be very inefficient, especially with larger dθ

● We proposed ULA updates for smarter exploration of θ space

● Challenge is approximating the score online and accurately
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Thank you!

https://sarapv.github.io/

https://sarapv.github.io/
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