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ABSTRACT

We introduce a new method, named PropMixNN, that uses a
neural network to learn the proposal distribution of a particle
filter. The optimal proposal distribution is approximated as a
multivariate Gaussian mixture, so the proposed method aims at
learning the means and covariance matrices of the S components
that characterise the mixture. This unsupervised method is trained
to target the log-likelihood, which does not require knowledge
of the hidden state. The performance of the method is assessed
in a stochastic Lorenz 96 model, which presents a non-linear
chaotic behaviour. The proposed method reduces estimation
errors in comparison with the state-of-the-art, showing greater
improvement in highly non-linear scenarios.

Index Terms— machine learning, particle filtering, neural net-
works, differentiable particle filter, proposal distribution, Gaussian
mixture

1. INTRODUCTION
Challenges of many fields of science need the estimation of the
evolution of dynamical systems. Some examples can be found in
engineering [1], finance [2], epidemiology [3], ecology [4], and
meteorology [5]. The behaviour of these systems can be described
mathematically by state-space models (SSMs). They represent
the system with a sequence of state vectors, that are associated
with a sequence of noisy observation vectors. Classical filtering
techniques aim at computing the posterior distribution of the state
given the previous observations, providing not only point estimates
of the state but also quantifying their uncertainty. Among these
techniques, the Kalman filter (KF) [6] stands out, since it provides
the optimal solution for linear Gaussian systems. Several exten-
sions and generalisations of the KF, e.g., the extended Kalman
filter (EKF) [7] and the unscented Kalman filter (UKF) [8], have
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been proposed to deal with non-linear systems. However, these
methods approximate the state posterior with a Gaussian, which
may not be appropriate. The particle filter (PF) or sequential
Monte Carlo (SMC) [9, 10] are alternative solvers for general that
approximate distributions using Monte Carlo samples or particles.

The diversity of the particles in the PF is crucial to ensure an
adequate representation of the underlying dynamics of the system.
This diversity depends directly on the sampling or proposal dis-
tribution. The simplest approach is to use the system’s transition
model, as in the bootstrap particle filter (BPF) [9]. However,
this approach is not optimal, e.g., it does not incorporate all the
observations up to the current time, missing potential information.
Several methods aim at approximating the optimal proposal distri-
bution, such as the auxiliary particle filter (APF) [11, 12, 13, 14],
which adjusts the particle weights based on both the transition
dynamics and the likelihood of the new observation. In the last few
years, deep learning methods have been used within the SMC and
PF framework to learn the optimal proposal distribution. Some
examples are the neural adaptive SMC [15] and the variational
SMC [16], which focus on minimising the Kullback-Leibler (KL)
from the posterior to the proposal distribution. Furthermore, the
advances in differentiable particle filters (DPFs) [17, 18, 19, 20]
allow learning parameters and components of the PFs, such as the
proposal distribution, using gradient methods.

Contribution. In this paper, we propose PropMixNN, a method to
approximate the proposal distribution of a particle filter as an adap-
tive Gaussian mixture. This approximation allows us to estimate
complex distributions, becoming more expressive as the number of
mixture components increases. PropMixNN learns the mean and
covariance parameters of the components of a multivariate Gaus-
sian mixture as the output of a dense neural network. In order to
train this network, we utilise the DPF framework of [17], allowing
gradient propagation through the resampling step of the particle
filter. In addition, PropMixNN is unsupervised since it targets the
estimated log-likelihood, which does not require knowledge of
the hidden states, only the sequence of observations and models.

We introduce SSMs and PF background in Section 2. In
Section 3 we present our methodology for learning the proposal
of a generic non-linear SSM. We provide numerical validation in
Section 4, and give closing remarks in Section 5.
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2. BACKGROUND
2.1. State-space models (SSMs)
We are interested in state-space dynamical systems that can be
described by the equations

xt=f(xt−1,vt;θ),

yt=g(xt,rt;θ),
(1)

where t=1,...,T denotes discrete time, xt∈Rdx is the state of
the system, yt∈Rdy is the observation vector, vt and rt are dis-
tributed as the state and observation noises respectively, θ is a set
of parameters, and the functions f and g represent the behaviour
of the system. In terms of probability density functions (pdfs),
p(x0|θ) is the prior distribution of the state, p(xt|xt−1;θ) is the
conditional density of the state xt given xt−1, and p(yt|xt;θ) is
the conditional pdf of the observation yt given the hidden state
xt. The initial value of the state is distributed as x0 ∼ p(x0|θ).
Note that, the state sequence {xt}t≥0 is hidden and therefore not
observed, while the related sequence of {yt}t≥1 is observed.

2.2. Particle filtering
Filtering methods aim at estimating the state of the systems
described in Eqs. (1) by approximating the posterior pdf of the
state xt given all the observations y1:t, i.e., p(xt|y1:t;θ). PFs
approximate this pdf using a set of K Monte Carlo samples
(particles) and their associated weights, {x(i)

t ,w̃
(i)
t }Ki=1. Thus, the

posterior pdf can be written as

p(xt|y1:t;θ)≈
K∑
i=1

w̃
(i)
t δ

x
(i)
t
. (2)

A commonly used algorithm for particle filtering is the se-
quential importance resampling (SIR) algorithm, given in Alg. 1.
At every time step t, the particles and weights, {x(i)

t ,w̃
(i)
t }Ki=1, are

computed. First, K particles, x(i)
t , are drawn from the proposal

distribution π(xt|xt−1,yt;θ) (line 4). With a new observation yt,
we compute their weights, w(i)

t , in line 5. After obtaining the nor-
malised weights, w̃(i)

t , we can perform the resampling step (line
7), which samples the particle set according to their relative proba-
bility masses. This step is vital to avoid the degeneracy of the filter,
i.e., to ensure diversity in the particle set and obtain more accurate
approximations of the posterior distribution, p(xt|y1:t;θ).

The selection of the proposal distribution π(xt|xt−1,yt;θ)
is crucial to ensure the particles are drawn in regions of the
state space where the probability is high, so as to improve the
efficiency and accuracy of the PF. In the BPF [9], the proposal
distribution is set equal to the transition model of the SSM,
π(xt|xt−1,yt;θ)=p(xt|xt−1;θ). This approach is intuitive but
omits significant observational information from yt. The optimal
proposal distribution incorporatesthe observation at the current
time step t, i.e., π(xt|xt−1,yt;θ)= p(xt|xt−1,yt;θ). However,
this distribution is typically intractable or unknown. [21, 22] pro-
posed different parametric neural network architectures to learn
the proposal distribution π(xt|xt−1,yt;θ), such as modelling it
as a Gaussian distribution or utilising normalising flows.

Algorithm 1 Sequential importance resampling (SIR)

1: Draw x
(i)
0 ∼p(x0|θ), for i=1,...,K.

2: Set w̃(i)
0 =1/K, for i=1,...,K.

3: for t=1,...,T and i=1,...,K do
4: Draw x

(i)
t ∼π(xt|xt−1,yt;θ).

5: Compute w(i)
t =

p(yt|x(i)
t ;θ)p(x

(i)
t |x(i)

t−1;θ)

π(xt|xt−1,yt;θ)
.

6: Compute w̃(i)
t =w̃

(i)
t−1w

(i)
t /
∑

iw̃
(i)
t−1w

(i)
t .

7: Perform resampling over x(i)
t with weights w̃(i)

t .
8: end for

3. PROPOSED ALGORITHM
3.1. Mixture proposal
In this section we describe the PropMixNN method, which learns
the proposal distribution for a particle filter using a deep neural
network. PropMixNN conditions the proposal distribution on the
previous state value and the current measurement, as is the case
for the intractable optimal proposal distribution. We parameterise
π(xt|xt−1,yt;θ) as an equally weighted mixture ofS multivariate
Gaussian distributions with diagonal covariances, with the S-th
component given by

πs(xt|xt−1,yt;θ)=N (µs(xt−1,yt),Σs(xt−1,yt)), (3)

with s=1,...,S, where θ are the parameters of the neural network
and N (µ,Σ) denotes a multivariate Gaussian distribution with
mean µ and covariance Σ. The overall distribution is therefore

π(xt|xt−1,yt;θ):=S−1
S∑

s=1

πs(xt|xt−1,yt;θ). (4)

Mixtures of multivariate Gaussians can represent a wide range of
possible distributions, offering flexibility and expressiveness that
is beneficial for modelling complex systems [23].

3.2. Network architecture and learning
We propose to learn the µi(·) and Σi(·) functions using a single
dense neural network NN(xt−1,yt;θ). This network has the same
parameters θ for all t, simplifying learning. We use the previous
particle value xt−1 and the observation yt as input, as these are
also inputs to the (intractable) optimal proposal [24].

The network NN(xt−1,yt;θ) is made up of L layers, where

NN(xt−1,yt;θ)=zL, zl=ρl(Alzl−1+bl), (5)

for l = 1, ... , L. This gives θ = {A1,b1, ... ,AL,bL} as
our learned parameters. Each layer applies a transformation
by left-multiplying the dl−1-dimensional vector zl−1 by the
dl × dl−1 matrix Al and then summing the result with the
dl-dimensional vector bl, followed by applying the activation
function ρl. The initial value z0 = [x⊺

t−1,y
⊺
t ]

⊺, is the concate-
nation of the previous state xt−1 and the current observation
yt. Thus, z0 has dimension d0 = dx+ dy. The dimension of
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zL=[µ(1)⊺,c(1)⊺,...,µ(S)⊺,c(S)⊺]⊺ is dL :=2Sdx, as for each of
the S components we have a dx-dimensional mean vector µ(n)

t

and a dx-dimensional covariance scale vector c(n)t . We construct
the proposal distribution from NN(·;θ) by

makedist(NN(·;θ))=
S∑

s=1

S−1N (µ(s),diag(c(s))2). (6)

We learn the values of the Al and bl parameters through optimi-
sation, with the hyperparameters ρl, L, and dl fixed by design.

To train the network we maximise the log-likelihood, given by

ℓ(θ|y1:T )=

T∑
t=1

(
K∑
k=1

log
(
w

(k)
t ·w̃(k)

t−1

))
, (7)

where w
(k)
t and w̃

(k)
t−1 are the unnormalised and normalised

weights of the PF in Alg. 1 [24, Chapter 12]. Note that the
weights are dependent on θ through their computation in Alg. 1.
The log-likelihood is maximised when all weights are equal to
1/K, which is a desirable outcome as it reduces weight degener-
acy over time [24]. Furthermore, maximising the log-likelihood
does not require knowledge of the true value of the hidden state,
which is often unavailable, needing only the observations.

3.3. PropMixNN algorithm
The proposed PropMixNN method is described in Alg. 2. The
parameters of the NN are initialised (line 2). Then, it proceeds in
B iterations, each of them processing an increasingly large batch
of observations, i.e., y(b) = y1:⌈bT/B⌉, for b= 1,...,B. We do
this to avoid numerical errors, since the first sampled trajectories
often have an extremely small log-likelihood, which compounds
numerical errors when computing the weights in Alg. 1 [25].

For each batch b, we performJ optimisation steps. For the j-th
optimisation step of batch b, we run a particle filter with proposal
distribution π=π(b,j−1) and observations y(b) :=y1:⌈bT/B⌉ (line
8). The PF provides a log-likelihood estimate, ℓ

(
θb,j−1|y(b)

)
, of

the parameter θb,j−1, and compute the gradient ∇ℓ
(
θb,j−1|y(b)

)
with respect to θb,j−1 (line 9). We then update the parameters
θb,j−1 to obtainθb,j (line 10), e.g., using ADAM [26] or RADAM
[27]. From the updated parameters, we construct the updated net-
work NN(·;θb,j), which outputs the parameters of the distribution
π(b,j), when imputing xt−1 and yt (line 11). At the final iteration
of the last batch, we return the fully adapted proposal distribution
π(B,J) (line 14). In order to estimate quantities of the hidden state,
we run the PF (Alg. 1) with π(B,J) as the proposal distribution.

3.4. Discussion
Mixtures of multivariate Gaussians are capable of representing
unknown distributions, and often do so more reliably than alterna-
tive methods such as normalizing flows [21, 22, 28, 29]. These
methods, while powerful, are less intuitive than Gaussian mixtures
and are more susceptible to overfitting in this context [22, 21]. We
note that the weights wt depend on the samples x0:t, which are

Algorithm 2 PropMixNN

1: Choose number of batches B and steps per break J.
2: Initialise θ0,J :={A1,b1,...,AL,bL}.
3: Initialise π(0,J) :=makedist(NN(·;θ0,J)).
4: Set y(b) :=y1:⌈bT/B⌉ for b=1,...,B.
5: for b=1,...,B do
6: Set θb,0 :=θb−1,J and π(b,0) :=π(b−1,J)

7: for j=1,...,J do
8: Run Alg. 1 with π :=π(b,j−1) and observations y(b).
9: Obtain ℓ and ∇ℓ from above using Eq. (7).

10: Set θb,j :=update(θb,j−1,∇ℓ).
11: Set π(b,j) :=makedist(NN(·;θb,j)).
12: end for
13: end for
14: return π(B,J).

drawn from the proposal distribution that we are learning. There-
fore, we require a way to propagate gradients through stochastic
processes, namely particle resampling and sampling the mixture
distribution. We use the resampling method of [17] to propagate
gradients through the resampling step of the particle filter. By
including resampling in the training using this method, we remove
bias in our gradients [17, 18], improving the convergence charac-
teristics of PropMixNN and allowing application to more complex
systems, as weight degeneracy is combated in training.

In order to sample from the mixture distribution π, we draw
from a categorical distribution to select the mixture component,
and then from a multivariate Gaussian distribution. We repa-
rameterise the categorical distribution using a Gumbel-Softmax
distribution [30], which allows gradient propagation though cate-
gorical sampling. We propagate gradients through the multivariate
Gaussian sampling using the reparametrisation trick [31]. Hence,
we can compute the gradient of Eq. (7) with respect to our param-
eters θ= {A1,b1,...,AL,bL}, and therefore train the proposal
model using gradient methods, such as [26, 27].

4. NUMERICAL EXPERIMENTS

4.1. Lorenz 96 model
We consider a stochastic version of the Lorenz 96 model [32],
a system of differential equations known to exhibit chaotic
behaviour. The deterministic version of the system is given by

dxi,t
dt

=xi−1,t(xi+1,t−xi−2,t)−xi,t+F, (8)

for i=1,...,dx, where we define x−1 :=xdx−1,x0 :=xdx, and
xdx+1 :=x1. The variable F is a forcing constant; we use F=8.

We use a forward Euler integrator to approximately solve this
system. We denote k iterations of the integrator by Ik,

I1(xi,t,∆t):=xi,t+∆t
dxi,t
dt

, (9)

Ij(xi,t,∆t):=I1(Ij−1(xi,t,∆t),∆t), (10)
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where ∆t is the integration timestep. The dynamical system that
we use for testing is given by

xi,t+1=Ij(xi,t,∆t)+vi,t+1,

yi,t+1=xi,t+1+ri,t+1,
(11)

for i = 1, ... , dx and t = 0, ... , T , where vt ∼ N (0,Σv),
rt∼N (0,Σr), and Ij is defined by Eq. (10).

4.2. Simulation setup
We set j=5 and ∆t=0.001 in eq (11). By default, the dimension
of the system is dx = dy = 20, and we set Σv = 0.25I20 and
Σr=0.1I20. Every simulation runs until T =100. We initialise
the hidden state at x0=020. We assess the proposed method in
terms of relative mean square error (MSE), showing the accuracy
of the method as a fraction of the MSE obtained with the BPF
[9]. We compare our method with the IAPF [14], to illustrate the
performance of a standard improved proposal. The MSE compares
the weighted mean of the samples (the estimated state) with the
true underlying hidden state. Note that the MSE is not targeted
for optimisation. We compute the MSE for 200 independent runs
of the filter, and plot the mean and symmetric 95% intervals.

We test the proposed method using a variable number of
mixture components, with S ∈ {1,6,10}. All variants utilise
the same network architecture, with 3 layers of output sizes
d1=128,d2=256,d3=2Sdx. For the activation function ρl in
eq. (5) we set ρ1:2(x)=relu(x)=max(0,x), and ρ3(x)=x. We
train PropMixNN using the Rectified Adam optimiser [27], using
a fixed learning rate of 3 · 10−3, and setting the parameters of
Alg. 2 to B=⌈T/5⌉,J=50. We train the method using a series
of observations distinct from those on which we test PropMixNN;
however, all series are instances of the Lorenz 96 system.

4.3. Numerical results
Variable number of particles. We test PropMixNN for a variable
number of particles K, with K ∈ {30,50,100,200}. We use a
fixed series length T=100. Fig. 1a shows that PropMixNN out-
performs the BPF for all given values of K, obtaining at most 0.8
times the MSE of the BPF. PropMixNN with S=10 components
suffers with few particles, as few samples are taken from each
component, making training less reliable. Our method outper-
forms the IAPF at all tested numbers of particles, by an increasing
large margin as the number of particles increases.
Variable series length. We also test PropMixNN with a variable
series length T , with T ∈ {30,60,100,200,500}. In this case
we fix the number of particles K = 100. We show in Fig. 1b
that the proposed method obtains lower values of MSE than the
BPF and IAPF for all given values of T . The S=10 component
method slightly outperforms the S=6 component method, which
significantly outperforms the S=1 component method.
Variable state noise. Finally, we test PropMixNN for a variable
state noise Σv=σ2

vI20, with σ2
v∈{0.05,0.1,0.25,0.5,1}. In this

case, we fix the number of particles K=100 and the series length
T=100. Fig. 1c shows that PropMixNN is superior to the BPF for
all given values of σ2

v. The improvement in accuracy is lesser for

small noise variances, as small perturbations give a concentrated
distribution of the state values at the next time step. However,
the performance improves for larger values of σ2

v. This is due to
the chaotic behaviour of the system, which leads to multimodal
distributions for the next state, as the state follows one of several
diverging paths. The use of the multiple-component mixture in
the proposed method captures this behaviour, outperforming both
the BPF and the IAPF.

30 50 100 200
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Number of Particles
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(a) Relative MSE for a variable number of particles
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(b) Relative MSE for variable series length
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(c) Relative MSE for variable state noise magnitude

10 components 6 components 1 component
IAPF BPF

Fig. 1: Comparison of PropMixNN with the BPF and IAPF. Quantities are
divided by the MSE of the corresponding BPF.

5. CONCLUSION
This work proposes a novel method, called PropMixNN, to learn
the proposal distribution of a particle filter (PF). We employ a
dense neural network to learn the inputs to a parametric mixture,
from which we propose the hidden states. The proposed method
targets the log-likelihood and does not require knowledge of the
hidden states or particles of the PF. We show some numerical
results for a stochastic Lorenz 96 model, which has highly chaotic
behaviour. PropMixNN performs better in terms of estimation
error, outperforming standard choices of the proposal distribution
and a comparable state-of-the-art method.
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