
Copyright 2023 IEEE. Published in 2023 57th Asilomar Conference on Sig-
nals, Systems, and Computers, scheduled for 29 October - 1 November 2023
in Pacific Grove, California, US. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or pro-
motional purposes or for creating new collective works for resale or redistribu-
tion to servers or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

State and Dynamics Estimation with the
Kalman–Langevin filter

Martı́n Sevilla†⋆, Nicolas Zilberstein†⋆, Benjamin Cox§, Sara Pérez-Vieites§, Vı́ctor Elvira§, Santiago Segarra†
†Rice University, USA §University of Edinburgh, United Kingdom

Abstract—We present a novel sampling algorithm designed for
the joint estimation of the states and a graph which partially
models the state dynamics within a state-space representation.
In particular, the dynamics are composed by the output of a
graph filter whose input is a partially known adjacency matrix.
Our algorithm learns the unknown part of the adjacency matrix.
Our proposed method combines the classical Kalman filter for
state estimation with annealed Langevin diffusion. This allows
us to approximate the maximum a posteriori of the states and
dynamics given observations by sampling from the posterior
distribution. We exploit the prior information embedded in a
dataset of graphs of varying sizes through the utilization of graph
neural networks. We empirically demonstrate that integrating a
learned prior distribution into the estimation process significantly
improves estimation performance.

Index Terms—Network topology inference, system identification,
graph signal processing, diffusion models

I. INTRODUCTION

State-space models (SSMs) find widespread applications in
science and engineering by providing a statistical framework
to describe dynamical systems. These models represent hidden
states that change over time, with only partially observed
information available through noisy observations. In their basic
form, SSMs exhibit a Markovian dependency in the hidden
states, and each observation depends on the current state, with
conditional independence from the previous ones. Within this
framework, the main objective is estimating the hidden state
based on the available measurements.

When this estimation is approached from a probabilistic
standpoint, it is referred to as Bayesian filtering. In the case of
a linear-Gaussian SSM, the optimal estimator is the Kalman
filter [1], computing exactly the posterior distribution of the
state. For non-linear SSMs, alternative methods include the
unscented Kalman filter (UKF) [2] and the particle filter
(PF) [3], that approximate this distribution using a set of
samples. However, it is essential to note that all these algorithms
require knowledge of the model dynamics.

In this paper, we focus on network processes. Within this
framework, the matrix that describes the linear-Gaussian SSMs
under study corresponds to a graph filter [4], defined as a
polynomial function of the network’s adjacency matrix. This
approach aligns with graphical modeling for time series [5],

⋆These authors contributed equally to this work.
Research was sponsored by the Army Research Office and was accomplished
under Grant Numbers W911NF-17-S-0002 and W911NF-22-1-0235. In
addition, we acknowledge support from the 2022 University of Edinburgh -
Rice University Strategic Collaboration Award.
Emails of corresponding authors: {msevilla, nzilberstein}@rice.edu.

where the multidimensional state is composed of several
unidimensional time series, with each one corresponding to
a specific node in the underlying graph. The main goal is
to estimate each of the nodal time series as well as the
graph. The family of GraphEM algorithms [6]–[9] proposes a
graphical interpretation of state-space models, connects them
with Granger causality, solves the estimation problem when
the dynamics are given by the adjacency matrix (i.e., the graph
filter polynomial corresponds to the identity function), and
enforces sparsity in the graph estimation.

In this study, we introduce an algorithm designed to
incorporate additional prior information beyond graph sparsity
and to utilize any graph filter in the dynamics. We leverage
two sources of prior information. First, we make use of a
dataset containing adjacency matrices of potentially varying
sizes to estimate the prior distribution of the graph. This is
particularly advantageous in real-world scenarios where datasets
of graphs are more commonly available than closed-form
prior distributions. Furthermore, we incorporate edge-to-edge
constraints, allowing us to fix values in the adjacency matrix
based on edges that are known to either exist or be absent. This
feature is valuable when certain pairs of variables are known
to be conditionally independent, but the goal is to estimate the
remaining structure. Examples of such scenarios include gene
expression data [10] and social networks [11].

Our algorithm combines the classical Kalman filter with
Langevin dynamics, a Markov chain Monte Carlo (MCMC)
sampler [12], [13]. By defining a stochastic dynamic process
with a carefully designed stationary distribution, we can directly
sample from the posterior distribution of states and graphs given
the measurements.
Contributions. Our three main contributions are:
1) We propose the Kalman-Langevin filter (KLF), an algorithm
to estimate both the states and the dynamics of a network
process based on sampling from a posterior distribution.
2) We employ annealed Langevin dynamics to implement
this estimator, enabling us to incorporate an arbitrary prior
distribution learned from data.
3) Through numerical experiments conducted on real-world
graphs, we demonstrate that the incorporation of arbitrary
prior distributions outperforms estimators that use no prior
information or solely consider sparsity.

II. PROBLEM FORMULATION

Let G be a graph of N nodes represented by its adjacency
matrix A. We work with unweighted and undirected graphs

1372979-8-3503-2574-4/23/$31.00 ©2023 IEEE Asilomar 2023

20
23

 5
7t

h
As

ilo
m

ar
 C

on
fe

re
nc

e
on

 S
ig

na
ls,

 S
ys

te
m

s,
 a

nd
 C

om
pu

te
rs

 |
 9

79
-8

-3
50

3-
25

74
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IE
EE

CO
N

F5
95

24
.2

02
3.

10
47

68
14

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on April 25,2024 at 14:07:59 UTC from IEEE Xplore. Restrictions apply.

with no self-loops. Mathematically, these properties mean that
Aij ∈ {0, 1}, Aij = Aji, and Aii = 0, respectively. We assume
to know some subset of the edges of G, so that some entries
Aij are known to be either 0 or 1. One of our goals in this
work is to estimate the missing edges. To distinguish between
the known entries of A and the unknown ones, we define two
sets of indices

O = {(i, j) : Aij is observed ∧ i < j} , (1)

U = {(i, j) : Aij is unknown ∧ i < j} . (2)

Throughout this work, we refer to the known and unknown
fractions of the adjacency matrix as AO and AU , respectively.

Let us consider the following linear-Gaussian SSM{
xk+1 = h(A)xk +wk

yk = Cxk + vk

, (3)

where k = 1, . . . ,K denotes discrete time, xk ∈ RN is
the hidden state at time k, yk ∈ RD is the corresponding
observation, and the state and observation noises are wk ∼
N (000,W) and vk ∼ N (000,V), respectively. The dynamics
of (3) are given by hθ(A) ∈ RN×N , which stands for a
known graph filter [4] defined on the underlying graph G, such
that hθ : {0, 1}N×N → RN×N , where θ ∈ RNθ is a vector of
known parameters (see Section V for examples). The latent
process is initialized with x0 ∼ N (x̄0,P0), with both x̄0 and
P0 known. The hidden states xk can be considered, under our
perspective, a graph signal – they describe the state of each
node in G. We do not have access to the actual states, but
rather to the noisy measurements yk, with C assumed to be
known.

Our goal is to jointly estimate A and x1:K = {xk}Kk=1 while
incorporating prior information into our estimator. Usually,
sparsity is the only prior knowledge that is used when
estimating the edges of a graph [6], [14]. Our objective is,
however, to be able to leverage any available prior information.

Consider that we have access to a set of adjacency matrices
denoted as A, where each matrix corresponds to a distinct
graph and, importantly, the prior distribution p(A) of each one
of them matches that of the graph we intend to estimate. In
this setting, our problem is defined as follows:

Problem 1: Given the measurements {yk}Kk=1, a partially
known adjacency matrix AO, and prior knowledge given by
a set of adjacency matrices A, find an estimate of AU and
{xk}Kk=1 knowing that the dynamics are given by (3).

A natural way of solving Problem 1 is to compute the
maximum a posteriori (MAP):

ÂMAP, x̂1:KMAP =argmax
A,x1:K

p(A,x1:K |y1:K)

= argmax
A,x1:K

p(x1:K ,y1:K | A)p(A) (4)

subject to Aij = AO
ij , ∀(i, j) ∈ O.

Such an approach is not feasible, since a closed-form expression
for p(A) is not available. Moreover, as we aim to solve

Problem 1 for a generic graph filter hθ, the expression
p(x1:K ,y1:K | A) may not even be tractable from an
optimization standpoint, since hθ could have any non-convex
functional form.

A main challenge in solving Problem 1 is how to extract
the prior information in A and use it in our estimation. We
propose to replace the optimization formulation of (4) with a
sampling approach. Namely, our method is based on drawing a
sample from the posterior distribution. It is worth emphasizing
that our approach does not depend on having a closed-form
expression for p(A). While the sampled AU and x1:K may
not equal the MAP, we draw samples that attain large values
for the objective in (4) with high probability.

III. BACKGROUND

A. Langevin diffusion

The Langevin diffusion is a particular type of continuous-
time diffusion process [15]. For practical applications, we
need a discrete-time version. Applying an Euler-Maruyama
discretization to the original dynamics leads to the unadjusted
Langevin algorithm (ULA), which is an MCMC algorithm [13]
described by

zt+1 = zt + ϵ∇zt
log p(zt) +

√
2ϵτ bt, (5)

where τ is known as the temperature parameter, t is an iteration
index, ϵ is the discretization step size, and bt ∼ N (000, Id).

Under some regularity conditions, the distribution of zt
converges to π(z) ∝ p(z)1/τ when ϵ → 0 and t → ∞. In
essence, ULA generates samples from a target distribution p(z)
by iteratively moving in the direction of the gradient of the
logarithm of the target density (i.e., the score function), and
introducing noise to avoid local maxima. Although this result
is asymptotic, non-asymptotic convergence results have been
obtained under some conditions on the target distribution [16].

B. Annealed Langevin diffusion

Our primary objective is to extract samples from a discrete
random variable z ∈ {0, 1}d (recall that Aij ∈ {0, 1}).
Since the score function ∇z log p(z) is not defined for a
discrete random vector, we cannot sample using (5). To address
this issue, we introduce the notion of annealed Langevin
dynamics [17]–[21].

Let {σl}Ll=1 be a sequence of noise levels such that σ1 >
σ2 > · · · > σL > 0. Then, for a given noise level, we define a
perturbed version of the original random variable z in (5),

z̃t = z+ nt, (6)

where nt ∼ N
(
000, σ2

l(t)Id

)
. Then, the iterative process that

describes the annealed Langevin dynamics is given by

z̃t+1 = z̃t + αt∇z̃t
log p(z̃t) +

√
2αtτ zt, (7)

where αt = ϵ · σ2
l(t)/σ

2
L. The final sample can be obtained by

projecting z̃t onto the domain of z at the end of the process.
Not only does the annealed dynamics improve the algo-

rithm’s overall performance [17], but it also renders the target

1373

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on April 25,2024 at 14:07:59 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Kalman filter
Require: x̄0,P0|0, hθ(A),C,V,W,y1:K

Sample x̂0|0 ∼ N (x̄0,P0|0)
for k = 1 to K do

x̂k|k−1 = hθ(A)x̂k−1|k−1

P̂k|k−1 = hθ(A)P̂k−1|k−1hθ(A)⊤ +W
r̃k = yk −Cx̂k|k−1

Fk = CP̂k|k−1C
⊤ +V

Kk = P̂k|k−1C
⊤F−1

k

P̂k|k = (IN −KkC)P̂k|k−1

x̂k|k = x̂k|k−1 +Kkr̃k
end for
return x̂1:K

distribution differentiable, since z̃t is differentiable as defined
in (6). By adequately choosing the sequence {σl}Ll=1 and the
step size ϵ, after a sufficient number of iterations, the continuous
sample z̃t gradually approaches an authentic sample from the
discrete distribution π(z) ∝ p(z)1/τ .

Each noise level σl is a predefined hyperparameter. The
initial levels must be sufficiently high to facilitate thorough
exploration of the entire space, while the final levels should
be much smaller so that the target distribution converges
to the discrete one. Furthermore, setting τ < 1 allows to
accentuate the peaks in p(z) within the landscape of the
annealed continuous distribution.

C. Kalman filter

Given a dynamical system represented by (3), the objective is
to estimate the hidden variables x1:K given a set of observations
y1:K . We consider the conditional expectation as our estimator

x̂k = E[xk|y1:k] =

∫
xk p(xk|y1:k)dxk. (8)

In the context of Bayesian filtering, the posterior p(xk|y1:k)
is computed recursively by alternating between two steps: a
prediction step that propagates the state distribution of the
previous update step following the dynamic model, and an
update step, that combines the prediction and the likelihood
associated to the new observation to compute the new state
estimation [1]. Formally, given an initial prior distribution
p(x0), the prediction and update densities are computed as

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (9)

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1), (10)

where p(xk|xk−1) is the dynamic model and p(yk|xk) is the
measurement model that describes the system in (3). When
considering a linear-Gaussian SSM, and when hθ(A), C,
W, and V are known, we get a closed-form solution to (8)
given by the Kalman filter [22]. Specifically, we have that
p(xk|y1:k−1) = N (xk; x̂k|k−1, P̂k|k−1) and p(xk|y1:k) =

N (xk; x̂k|k, P̂k|k), where x̂k|k is the state estimation given
by (8) at time k, and P̂k|k the associated covariance matrix.
The equations of the Kalman filter for our SSM in (3) are
presented in Algorithm 1, since this is an integral part of our
proposed method.

IV. PROPOSED METHOD

Recall our aim is to solve Problem 1 by sampling from the
joint posterior p (A,x1:K |y1:K). In this endeavor, we consider
the factorization in (4). Notice that in the case of a SSM like (3),
the density p(x1:K ,y1:K |A) is given by a product of Gaussian
distributions. Hence, akin to the particle marginal Metropolis–
Hastings (PMMH) sampler [23], we propose to leverage this
closed-form solution to jointly generate samples {A,x1:K} by
alternating between the Langevin diffusion to sample candidates
A, and a Kalman filter to compute a sample candidate of the
states x1:K . This also connects with the probabilistic version
of the GraphEM family of algorithms [24], where reversible
jump MCMC is used instead. In Section IV-A, we first present
how to leverage the annealed Langevin diffusion to sample
graphs from the joint posterior. Then, in Section IV-B, we
explain how to exploit the prior information given by A. Last,
in Section IV-C, we describe our proposed algorithm.

A. Factorized posterior

Our goal is to draw samples from

p(A,x1:K | y1:K) =
p(A)p(x0)

p(y1:K)

K∏
k=1

p(xk | xk−1,A)

×
K∏

k=1

p(yk | xk).

(11)

The only requirement to sample from (11) by using (7) is to
know the score function of the target distribution. Since the
variable A is discrete, we cannot compute the score function of
(11) with respect to A. This is where the annealing technique
described in Section III-B comes into play.

In a slight abuse of notation, we use the half-vectorization
a = vech(A) and A interchangeably. Analogously, we use ã
instead of Ã. Taking the logarithm of the annealed counterpart
of (11), we get

log p(ã,x1:K | y1:K) =M + log p(ã) +

K∑
k=1

log p(yk | xk)

+

K∑
k=1

log p(xk | xk−1, ã), (12)

where M groups the constant terms. Before using (7) to draw
samples, we need to compute the score function of (12) with
respect to ã:

∇ã log p(ã,x1:K | y1:K) =∇ã log p(ã) (13)

+

K∑
k=1

∇ã log p(xk | xk−1, ã).

The conditional transition probabilities are given by

log p(xk | xk−1, ã) = −
1

2

(
xk − hθ(Ã)xk−1

)⊤
Q−1(

xk − hθ(Ã)xk−1

)
+ C,

(14)

1374

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on April 25,2024 at 14:07:59 UTC from IEEE Xplore. Restrictions apply.

where C does not depend on xk. Regardless of the functional
form of hθ(·), as long as it is differentiable, we are always
able to compute ∇ã log p(xk | xk−1, ã) via automatic differen-
tiation [25]. On the contrary, calculating the first term in (13)
poses a notably more intricate challenge. The density p(ã)
corresponds to a discretely distributed vector that is perturbed
by white Gaussian noise. Moreover, in our specific scenario,
we even lack an explicit expression for p(a) and solely rely
on the collection of graphs A. Fortunately, we can tackle this
issue by developing an estimator to approximate ∇ã log p(ã).
We achieve this through the use of neural networks [17], [20].

B. Learned graph priors

It is important to emphasize that our primary objective is
to estimate ∇ log p(ã) in order to enable sampling from (11)
by employing the diffusion process defined in (7). We define
the output of the graph neural network (GNN) we intend to
train as sξ(ã, σ), where ξ represents its trainable parameters.
Ideally, the network’s output for a given ã (corresponding to
the current noise level σl for the ongoing iteration) should
closely resemble the true score function ∇ log p(ã).

For a single noise level σl, the GNN output should approxi-
mate the desired score function, such that

D (ã|ξ, σl) = ∥sξ(ã, σl)−∇ log p(ã)∥22 (15)

is minimized. The issue is that the loss function cannot be
dependent on ∇ log p(ã), as this is the function we are aiming
to learn. An alternative conditional loss can be defined as

Dc (ã|ξ, σl) = ∥sξ(ã, σl)−∇ log p(ã|a)∥22 , (16)

since ∇ log p(ã|a) = (a− ã)/σ2
l is known during training: a

is one element of A, and both ã and σl are the GNN inputs.
Namely, ã is easily generated using a and noise of variance σ2

l .
The values for ξ that optimize (16) also optimize (15) since
they are equivalent from an optimization standpoint, as shown
in [26]. In order to jointly minimize the MSE across all noise
levels, we train the GNN by minimizing

J
(
ξ|{σl}Ll=1

)
=

1

2L

L∑
l=1

σ2
l E [Dc (ã|ξ, σl)] , (17)

where the weights given by σ2
l are used so that every term in the

summation presents the same order of magnitude [17]. In this
study, we use the EDP-GNN architecture [27] to minimize (17).

C. The KLF algorithm

We propose to jointly estimate A and x1:K by running one
step of the Langevin dynamics for the former together with
a Kalman filter for the latter, as described in Algorithm 2.
Notice that the score estimator s(·) is an input, meaning that
an already trained GNN is required to run the KLF. The output
of this GNN should correctly approximate the prior score, so
that s (ã, σl) ≃ ∇ã log p (ã).

For each of the L noise levels, we update x̂1:K once at the
beginning of the Langevin estimation for that level (see line 5).
The choice of not running a Kalman filter for each Langevin

Algorithm 2 Kalman–Langevin filter

Require: y1:K , AO, hθ(·), p(x0), s(·), {σl}Ll=1, T , ϵ, τ
1: Initialize Ã at random
2: ÃO ← AO ▷ Fix the known values
3: for l← 1 to L do
4: αl ← ϵ · σ2

l /σ
2
L

5: Compute x̂1:K with Algorithm 1 using hθ(Ã)
6: for t← 1 to T do
7: Draw n ∼ N

(
000, I|U|

)
8: Compute

∑K
k=1∇ã log p(xk | xk−1, ã) using (14)

9: Compute s(ã, σl) using the trained GNN
10: ∆←∑K

k=1∇ã log p(xk | xk−1, ã) + s(ã, σl)
11: ãU ← ãU + αl∆

U +
√
2αlτn

12: end for
13: end for
14: Â← I

{
Ã ≥ 0.5

}
▷ Threshold each value in Ã

15: return Â, x̂1:K

iteration t is due to computational reasons, since doing so
could become too computationally expensive for large values
of K. After updating the state estimates, we run Langevin on
a whole noise level for T iterations. After LT Langevin steps
(and, therefore, L Kalman updates), the algorithm still yields
a continuous matrix Ã, which can be thresholded to obtain a
binary-valued matrix.

V. NUMERICAL RESULTS

We run experiments using ego-nets that correspond to real
networks from the music streaming service Deezer [28]. We
use the graphs from the original dataset such that N ≤ 25,
selecting |A| = 2926 to train the EDP-GNN and the remaining
100 for testing. We assume 50% of the values in each a to be
unknown. Regarding the KLF hyperparameters, we use L = 10
noise levels, evenly spaced between σ1 = 0.5 and σL = 0.03,
and T = 300 steps per level. We set the step size at ϵ = 10−6

and the temperature at τ = 0.5.
Normalizing filter. The first graph filter used to generate the
signals is hθ(A) = 1

θA, where θ is a known constant that
we fix at the maximum eigenvalue of the true (unknown) A.
We use K = 10, W = 0.1IN and V = 10ID. We vary the
measurement matrix C so that, in each experiment, different
numbers of nodes are observed, but the matrix is such that it
has a 1 in each row and 0 everywhere else. The results of the
simulations are shown in Fig. 1a.
Heat diffusion filter. The second graph filter we used is
hθ(A) = exp(−θL), where L = diag(A111)−A is the graph
Laplacian. For every simulation, the coefficient θ is generated
independently as θ ∼ Unif[0.01, 0.05]. We set K = 100, and
the matrices W, V, and C are defined as in the previous
experiment. The results of the simulations are shown in Fig. 1b.

In both test cases, the estimation performance of all methods
improves as the number of observed nodes increases. We
observe that incorporating the prior information encoded in
the dataset A through our proposed Kalman-Langevin filter
improves the estimation performance of both AU and x1:K .

1375

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on April 25,2024 at 14:07:59 UTC from IEEE Xplore. Restrictions apply.

0.20 0.47 0.73 1.00
Proportion of observed nodes

0.2

0.3

0.4

0.5

0.6

0.7

F1 on AU

KLF (posterior)

KLF (likelihood)

KAF

GraphEM

0.20 0.47 0.73 1.00
Proportion of observed nodes

0.1

0.2

0.3

0.4

0.5

0.6

Normalized MSE on x1:K

KLF (posterior)

KLF (likelihood)

KAF

GraphEM

Kalman

(a) Normalizing filter

0.20 0.47 0.73 1.00
Proportion of observed nodes

0.3

0.4

0.5

0.6

0.7

F1 on AU

KLF (posterior)

KLF (likelihood)

KAF

0.20 0.47 0.73 1.00
Proportion of observed nodes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Normalized MSE on x1:K

KLF (posterior)

KLF (likelihood)

KAF

Kalman

(b) Heat diffusion filter

Fig. 1: Estimation performance of our method (blue curves) compared to other benchmarks. The orange curves correspond to the KLF using only the likelihood
(i.e., Algorithm 2 but setting s(ã, σl) = 0 in line 10). The Kalman-Adam filter (KAF) tries to find the maximum likelihood estimator by optimizing (14) (i.e.,
it also ignores prior information, but uses optimization instead of sampling). In the case of Fig. 1a, the dynamics of the SSM are given by the graph itself,
and thus, we can compare our results to GraphEM [6]. The dashed curves correspond to the Kalman estimate of the states if the dynamics were completely
known and are just plotted to provide a lower bound on the error. The normalized MSE for the trajectories is computed as ∥x1:K − x̂1:K∥22 / ∥x1:K∥22. The
reported metrics correspond to the median over 100 simulations.

VI. CONCLUSIONS

We have introduced an algorithm that combines the classical
Kalman filter with annealed Langevin dynamics for state and
dynamics inference, incorporating prior knowledge about graph
distributions. This knowledge is exploited through training
GNNs on diverse graphs, irrespective of their size or prior
distribution. Our approach offers a sample from the posterior
distribution as an estimator, which is considered to be an
approximate solution to the MAP estimation problem. Experi-
ments conducted on real-world networks have demonstrated
that the integration of observed noisy graph signals with prior
knowledge yields superior results compared to using only
observed data.

REFERENCES

[1] S. Särkkä and L. Svensson, Bayesian Filtering and Smoothing, vol. 17,
Cambridge university press, 2023.

[2] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[3] P. M. Djuric, M. F. Bugallo, and J. Mı́guez, “Density assisted particle
filters for state and parameter estimation,” in 2004 IEEE International
Conference on Acoustics, Speech, and Signal Processing. IEEE, 2004,
vol. 2, pp. ii–701.

[4] E. Isufi, F. Gama, D. I. Shuman, and S. Segarra, “Graph filters for
signal processing and machine learning on graphs,” arXiv preprint
arXiv:2211.08854, 2022.

[5] M. Eichler, “Graphical modelling of multivariate time series,” Probability
Theory and Related Fields, vol. 153, pp. 233–268, 2012.

[6] E. Chouzenoux and V. Elvira, “GraphEM: EM algorithm for blind kalman
filtering under graphical sparsity constraints,” in IEEE Intl. Conf. Acoust.,
Speech and Signal Process. (ICASSP). IEEE, 2020, pp. 5840–5844.

[7] V. Elvira and É. Chouzenoux, “Graphical inference in linear-gaussian
state-space models,” IEEE Transactions on Signal Processing, vol. 70,
pp. 4757–4771, 2022.

[8] E. Chouzenoux and V. Elvira, “Sparse graphical linear dynamical systems,”
arXiv preprint arXiv:2307.03210, 2023.

[9] M. Greiff, S. Di Cairano, H. Mansour, and K. Berntorp, “A gener-
alized GraphEM for sparse time-varying dynamical systems,” IFAC-
PapersOnLine, vol. 56, no. 2, pp. 5957–5962, 2023.

[10] Y. Li and S. Jackson, “Gene network reconstruction by integration of
biological prior knowledge,” G3-Genes Genomes Genetics, vol. 5, pp.
1075–1079, 2015.

[11] Q. Wu, Z. Zhang, J. Waltz, T. Ma, D. Milton, and S. Chen, “Predicting
latent links from incomplete network data using exponential random
graph model with outcome misclassification,” bioRxiv, 2019.

[12] C. Robert and G. Casella, Monte Carlo Statistical Method, Springer,
1999.

[13] G. O. Roberts and R. L. Tweedie, “Exponential convergence of Langevin
distributions and their discrete approximations,” Bernoulli, vol. 2, pp.
341–363, 1996.

[14] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the
dots: Identifying network structure via graph signal processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 16–43, 2019.

[15] G. A. Pavliotis, Stochastic Processes and Applications: Diffusion
Processes, the Fokker-Planck and Langevin Equations, Springer, 2014.

[16] A. S. Dalalyan and A. Karagulyan, “User-friendly guarantees for the
Langevin Monte Carlo with inaccurate gradient,” Stoch. Process. Their
Appl., vol. 129, no. 12, pp. 5278–5311, 2019.

[17] Y. Song and S. Ermon, “Generative modeling by estimating gradients
of the data distribution,” arXiv preprint arXiv:1907.05600, 2020.

[18] B. Kawar, G. Vaksman, and M. Elad, “SNIPS: Solving noisy inverse
problems stochastically,” arXiv preprint arXiv:2105.14951, 2021.

[19] N. Zilberstein, C. Dick, R. Doost-Mohammady, A. Sabharwal, and S.
Segarra, “Annealed Langevin dynamics for massive MIMO detection,”
IEEE Trans. Wireless Commun., vol. 22, no. 6, 2023 (Online Nov 2022).

[20] M. Sevilla and S. Segarra, “Bayesian topology inference on par-
tially known networks from input-output pairs,” arXiv preprint
arXiv:2309.06532, 2023.

[21] N. Zilberstein, A. Sabharwal, and S. Segarra, “Solving linear inverse
problems using higher-order annealed Langevin diffusion,” arXiv preprint
arXiv:2305.05014, 2023.

[22] B. D. O. Anderson and J. B. Moore, Optimal Filtering, Prentice Hall,
1979.

[23] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte
Carlo methods (with discussion),” Journal of the Royal Statistical Society,
Series B, vol. 72, pp. 1–33, 01 2010.

[24] B. Cox and V. Elvira, “Sparse bayesian estimation of parameters in linear-
gaussian state-space models,” IEEE Transactions on Signal Processing,
2023.

[25] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” Journal of
Marchine Learning Research, vol. 18, pp. 1–43, 2018.

[26] P. Vincent, “A connection between score matching and denoising
autoencoders,” Neural Comput., vol. 23, no. 7, pp. 1661–1674, 2011.

[27] C. Niu, Y. Song, J. Song, S. Zhao, A. Grover, and S. Ermon, “Permutation
invariant graph generation via score-based generative modeling,” in
International Conference on Artificial Intelligence and Statistics. PMLR,
2020, pp. 4474–4484.

[28] B. Rozemberczki, O. Kiss, and R. Sarkar, “Karate Club: an API
oriented open-source Python framework for unsupervised learning on
graphs,” in ACM International Conference on Information and Knowledge
Management. ACM, 2020, p. 3125–3132.

1376

Authorized licensed use limited to: AALTO UNIVERSITY. Downloaded on April 25,2024 at 14:07:59 UTC from IEEE Xplore. Restrictions apply.

