AGNesF: Adaptive Gaussian Nested Filter for Parameter Estimation and State Tracking in Dynamical Systems

<u>Goal</u>: Computation of the joint posterior pdf

Structure:

Top layer: θ estimation.

- e.g., SMC, SQMC, UKF, QKF.

Bottom layer: x tracking.

e.g., SMC, EKF, UKF.

Key point: likelihood computation.

Sara Pérez-Vieites* Víctor Elvira[†]

CERI Systèmes Numériques, IMT Nord Europe, France.* School of Mathematics, University of Edinburgh, United Kingdom.[†]

Emails: sara.perez-vieites@imt-nord-europe.fr^{*}, victor.elvira@ed.ac.uk[†]

$$\frac{p(\boldsymbol{y}_t | \boldsymbol{y}_{1:t-1}, \boldsymbol{\theta}_t^n)}{\sum_{n=1}^{N_{\theta,t}} p(\boldsymbol{y}_t | \boldsymbol{y}_{1:t-1}, \boldsymbol{\theta}_t^n)}.$$

$$= \max(\alpha_t - 1, \alpha_{\min}).$$

Pérez-Vieites, S., & Elvira, V. (2023). Adaptive Gaussian nested filter for parameter estimation and state tracking in dynamical systems. In **ICASSP 2023.**

Numerical Experiments

- Synthetic data of **Lorenz 63 model**.
- Estimation of \boldsymbol{x}_t and $\boldsymbol{\theta} = [S, R, B]^\top$.
- Comparison of:
 - -AGNesF with $\alpha_0 = 4$ and $\alpha_{\min} = 2$.

More details

-Nested Gaussian filter (NGF) with fixed α and N_{θ} .

running time (minutes)

