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Problem Statement

We consider sequential Bayesian experimental design (BED) for
partially observable state-space models (SSMs) with a design input ξt that
shapes data acquisition:

(transition) xt ∼ f (xt | xt−1, θ, ξt), (1)
(observation) yt ∼ g(yt | xt, θ, ξt). (2)

•θ: static parameters – to learn
•xt: latent states – to learn (partially observed)
•ξt: design variables – to optimize (online)

Optimization objective: expected information gain (EIG). We choose
ξt to maximize the expected reduction in uncertainty about θ:

EIGθ(ξt) = Ep(yt|ξt,ht−1)

[
H

[
p(θ |ht−1)

]
−H

[
p(θ |yt, ξt, ht−1)

] ]
(3)

= Ep(θ|ht−1) p(yt|θ,ξt)

[
log p(yt |θ, ξt)− log p(yt |ξt)

]
. (4)

•H[·] is the Shannon entropy,
•ht−1 = {ξ1:t−1, y1:t−1} is the history up to time t− 1,
• p(yt |θ, ξt) is the likelihood, and p(yt |ξt) is the evidence.
Notation: To reduce clutter, all distributions are understood to condition on ht−1 unless
shown explicitly.

−→ The optimal design ξ⋆
t is the one that maximizes EIGθ(ξt).

Challenges & key idea

Challenges:
(i) Intractability and latent-state marginalizations:

(likelihood) p(yt | θ, ξt) = Ep(x0:t|θ,ht−1)
[
g(yt |xt, θ, ξt)

]
, (5)

(evidence) p(yt | ξt) = Ep(θ|ht−1) p(x0:t|θ,ht−1)
[
g(yt |xt, θ, ξt)

]
. (6)

(ii) Sequential inference bottleneck: p(x0:t, θ |ht) changes every step;
naïve recomputation would replay the entire history each time.

Key idea:
Extend BED to partial observability by:
• deriving new Monte Carlo estimators of EIGθ (and its gradient)

that treat the latent-state integrals explicitly; and
• leveraging nested particle filters (NPFs) [1], that is online Bayesian

inference methods, to reuse state–parameter particles and avoid
replaying past data.

Assumption: f and g are differentiable w.r.t. ξt (for gradient-based design).
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TL;DR

•Problem: identifying the system parameters θ online, where latent
states xt evolve over time, observed via noisy measurements yt. These
measurement (data acquisition) processes can be influenced by
designs ξt.
•Proposed solution: choose designs ξt by maximizing the expected

information gain (EIG) about θ, marginalizing out latent states xt.
Leverage a nested particle filters (NPF) to approximate the
intractable posterior p(xt, θ |ht) online.
•Control view: the design ξt acts as a control input that influences

the evolution of the latent states xt and the observations yt, thereby
affecting the information gained about the parameters θ.

Method: Online BED approach

Algorithm Per-step design selection at time t

1: Input: particles {θ(m), x
(m,n)
t−1 }

M,N
m=1,n=1 from p(xt−1, θ | ht−1); initial de-

sign ξ
(0)
t ; stepsizes {ηk}K−1

k=0
2: Output: particles {θ(m), x

(m,n)
t }M,N

m=1,n=1 from p(xt, θ |ht); design ξt

3:

4: Prediction (simulator): for each (m, n), propagate one step forward
through f and g to get states and pseudo-observations {x̃(m,n)

t , ỹ
(m,n)
t }

5: for k = 0, . . . , K − 1 do ▷ design optimization loop
6: Inner expectations: approximate p(ỹt | θ, ξ

(k)
t ) and p(ỹt | ξ

(k)
t )

(and their gradients)
7: Gradient estimate: compute ∇̂ξt

EIGθ(ξ(k)
t )

8: Ascent step: ξ
(k+1)
t ←

(
ξ

(k)
t + ηk ∇̂ξt

EIGθ(ξ(k)
t )

)
9: end for

10: Set ξt← ξ
(K)
t ; collect yt ▷ observe new data

11: Update (one step of NPF): p(xt, θ |ht) ▷ update beliefs

Example: Moving source location

State. A single source moves in the plane with state xt =
(
px,t, py,t, ϕt

)⊤,
such that

px,t = px,t−1 + vx cos
(
ϕt−1

)
+ wx,t, (7)

py,t = py,t−1 + vy sin
(
ϕt−1

)
+ wy,t, (8)

ϕt = ϕt−1 + wϕ,t, (9)
where wt ∼ N (0, Q) and θ = (vx, vy) are unknown parameters.
Observation. Sensors fixed at positions {sj}J

j=1 ⊂ R2 return a noisy
log–intensity with distance attenuation and cardioid directivity,

log yt,j |xt, ξt ∼ N

log

b + αj

m + ∥pt − sj∥2

1 + cos ∆t,j(ξt,j)
2


, σ2

 ,

∆t,j(ξt,j) = ξt,j − atan2
(
(pt − sj)y, (pt − sj)x

)
.

Design. The design ξt = (ξt,1, . . . , ξt,J) sets sensor orientations.
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