Online Bayesian Experimental Design for Partially Observable Dynamical Systems

Sara Pérez-Vieites*, Sahel Iqbal, Simo Särkkä, Dominik Baumann

Department of Electrical Engineering and Automation, Aalto University, Finland. Finnish Center for Artificial Intelligence (FCAI).

 $sara.perezvieites@aalto.fi^{\star}$, sahel.iqbal@aalto.fi, simo.sarkka@aalto.fi, dominik.baumann@aalto.fi

Problem Statement

We consider sequential Bayesian experimental design (BED) for partially observable state-space models (SSMs) with a design input $\boldsymbol{\xi}_t$ that shapes data acquisition:

(transition)
$$\boldsymbol{x}_t \sim f(\boldsymbol{x}_t \mid \boldsymbol{x}_{t-1}, \boldsymbol{\theta}, \boldsymbol{\xi}_t),$$
 (1)

(observation)
$$\boldsymbol{y}_t \sim g(\boldsymbol{y}_t \mid \boldsymbol{x}_t, \boldsymbol{\theta}, \boldsymbol{\xi}_t).$$
 (2)

- $\bullet \theta$: static parameters to learn
- x_t : latent states to learn (partially observed)
- ξ_t : design variables to optimize (online)

Optimization objective: expected information gain (EIG). We choose $\boldsymbol{\xi}_t$ to maximize the expected reduction in uncertainty about $\boldsymbol{\theta}$:

$$\operatorname{EIG}_{\boldsymbol{\theta}}(\boldsymbol{\xi}_{t}) = \mathbb{E}_{p(\boldsymbol{y}_{t}|\boldsymbol{\xi}_{t},h_{t-1})} \left[\mathcal{H}[p(\boldsymbol{\theta} \mid h_{t-1})] - \mathcal{H}[p(\boldsymbol{\theta} \mid \boldsymbol{y}_{t},\boldsymbol{\xi}_{t},h_{t-1})] \right]$$
(3)
$$= \mathbb{E}_{p(\boldsymbol{\theta}\mid h_{t-1})} p(\boldsymbol{y}_{t}\mid \boldsymbol{\theta},\boldsymbol{\xi}_{t}) \left[\log p(\boldsymbol{y}_{t}\mid \boldsymbol{\theta},\boldsymbol{\xi}_{t}) - \log p(\boldsymbol{y}_{t}\mid \boldsymbol{\xi}_{t}) \right].$$
(4)

- $\bullet \mathcal{H}|\cdot|$ is the Shannon entropy,
- $h_{t-1} = \{ \boldsymbol{\xi}_{1:t-1}, \boldsymbol{y}_{1:t-1} \}$ is the history up to time t-1,
- $p(y_t | \theta, \xi_t)$ is the likelihood, and $p(y_t | \xi_t)$ is the evidence.

Notation: To reduce clutter, all distributions are understood to condition on h_{t-1} unless shown explicitly.

 \longrightarrow The **optimal design** $\boldsymbol{\xi}_t^{\star}$ is the one that maximizes $\mathrm{EIG}_{\boldsymbol{\theta}}(\boldsymbol{\xi}_t)$.

Challenges & key idea

Challenges:

(i) Intractability and latent-state marginalizations:

(likelihood)
$$p(\boldsymbol{y}_t \mid \boldsymbol{\theta}, \boldsymbol{\xi}_t) = \mathbb{E}_{p(\boldsymbol{x}_{0:t} \mid \boldsymbol{\theta}, h_{t-1})} [g(\boldsymbol{y}_t \mid \boldsymbol{x}_t, \boldsymbol{\theta}, \boldsymbol{\xi}_t)],$$
(5)
(evidence)
$$p(\boldsymbol{y}_t \mid \boldsymbol{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta} \mid h_{t-1}) p(\boldsymbol{x}_{0:t} \mid \boldsymbol{\theta}, h_{t-1})} [g(\boldsymbol{y}_t \mid \boldsymbol{x}_t, \boldsymbol{\theta}, \boldsymbol{\xi}_t)].$$
(6)

(ii) Sequential inference bottleneck: $p(\boldsymbol{x}_{0:t}, \boldsymbol{\theta} | h_t)$ changes every step; naïve recomputation would replay the entire history each time.

Key idea:

Extend BED to partial observability by:

- deriving new Monte Carlo estimators of EIG_{θ} (and its gradient) that treat the latent-state integrals explicitly; and
- leveraging nested particle filters (NPFs) [1], that is online Bayesian inference methods, to reuse state-parameter particles and avoid replaying past data.

Assumption: f and g are differentiable w.r.t. $\boldsymbol{\xi}_t$ (for gradient-based design).

References

- [1] D. Crisan and J. Míguez, "Nested particle filters for online parameter estimation in discrete-time state-space Markov models," *Bernoulli*, vol. 24, no. 4A, pp. 3039–3086, 2018.
- [2] T. Rainforth, R. Cornish, H. Yang, A. Warrington, and F. Wood, "Tighter variational bounds are not necessarily better," in *Proceedings of the 35th International* Conference on Machine Learning (ICML), 2018.
- [3] S. Iqbal, A. Corenflos, S. Särkkä, and H. Abdulsamad, "Nesting particle filters for experimental design in dynamical systems," in International Conference on Machine Learning, pp. 21047–21068, PMLR, 2024.
- [4] S. Iqbal, H. Abdulsamad, S. Pérez-Vieites, S. Särkkä, and A. Corenflos, "Recursive nested filtering for efficient amortized Bayesian experimental design," arXiv preprint arXiv:2409.05354, 2024.

TL;DR

- **Problem:** identifying the system parameters θ online, where latent states \boldsymbol{x}_t evolve over time, observed via noisy measurements \boldsymbol{y}_t . These measurement (data acquisition) processes can be influenced by designs $\boldsymbol{\xi}_t$.
- Proposed solution: choose designs ξ_t by maximizing the expected information gain (EIG) about $\boldsymbol{\theta}$, marginalizing out latent states \boldsymbol{x}_t . Leverage a nested particle filters (NPF) to approximate the intractable posterior $p(\boldsymbol{x}_t, \boldsymbol{\theta} | h_t)$ online.
- Control view: the design ξ_t acts as a control input that influences the evolution of the latent states \boldsymbol{x}_t and the observations \boldsymbol{y}_t , thereby affecting the information gained about the parameters $\boldsymbol{\theta}$.

Method: Online BED approach

Algorithm Per-step design selection at time t

- 1: Input: particles $\{m{ heta}^{(m)}, m{x}_{t-1}^{(m,n)}\}_{m=1,n=1}^{M,N}$ from $p(m{x}_{t-1}, m{ heta} \mid h_{t-1})$; initial design $\boldsymbol{\xi}_t^{(0)}$; stepsizes $\{\eta_k\}_{k=0}^{K-1}$
- 2: Output: particles $\{m{ heta}^{(m)}, m{x}^{(m,n)}_t\}_{m=1,n=1}^{M,N}$ from $p(m{x}_t, m{ heta} \mid h_t)$; design $m{\xi}_t$
- 4: **Prediction (simulator):** for each (m, n), propagate one step forward through f and g to get states and pseudo-observations $\{\tilde{m{x}}_t^{(m,n)}, \tilde{m{y}}_t^{(m,n)}\}$
- 5: **for** k = 0, ..., K 1 **do**

- Inner expectations: approximate $p(\tilde{\boldsymbol{y}}_t \mid \boldsymbol{\theta}, \boldsymbol{\xi}_t^{(k)})$ and $p(\tilde{\boldsymbol{y}}_t \mid \boldsymbol{\xi}_t^{(k)})$ (and their gradients)
- Gradient estimate: compute $\widehat{\nabla}_{\boldsymbol{\xi}_t} \mathrm{EIG}_{\boldsymbol{\theta}}(\boldsymbol{\xi}_t^{(k)})$
- Ascent step: $\boldsymbol{\xi}_t^{(k+1)} \leftarrow \left(\boldsymbol{\xi}_t^{(k)} + \eta_k \, \widehat{\nabla}_{\boldsymbol{\xi}_t} \mathrm{EIG}_{\boldsymbol{\theta}}(\boldsymbol{\xi}_t^{(k)})\right)$
- 9: end for
- 10: Set $\boldsymbol{\xi}_t \leftarrow \boldsymbol{\xi}_t^{(K)}$; collect \boldsymbol{y}_t

> observe new data

11: Update (one step of NPF): $p(\boldsymbol{x}_t, \boldsymbol{\theta} \,|\, h_t)$

> update beliefs

Example: Moving source location

State. A single source moves in the plane with state $\boldsymbol{x}_t = (p_{x,t}, p_{y,t}, \phi_t)^{\top}$, such that

$$p_{x,t} = p_{x,t-1} + \mathbf{v}_x \cos(\phi_{t-1}) + w_{x,t},$$

$$p_{y,t} = p_{y,t-1} + \mathbf{v}_y \sin(\phi_{t-1}) + w_{y,t},$$
(8)

$$p_{y,t} = p_{y,t-1} + v_y \sin(\phi_{t-1}) + w_{y,t}, \tag{8}$$

$$\phi_t = \phi_{t-1} + w_{\phi,t},\tag{9}$$

where $\boldsymbol{w}_t \sim \mathcal{N}(\mathbf{0}, Q)$ and $\boldsymbol{\theta} = (v_x, v_y)$ are unknown parameters.

Observation. Sensors fixed at positions $\{s_j\}_{j=1}^J \subset \mathbb{R}^2$ return a noisy log-intensity with distance attenuation and cardioid directivity,

$$\log y_{t,j} | \boldsymbol{x}_t, \boldsymbol{\xi}_t \sim \mathcal{N} \left(\log \left[b + \frac{\alpha_j}{m + \|\boldsymbol{p}_t - \boldsymbol{s}_j\|^2} \left(\frac{1 + \cos \Delta_{t,j}(\boldsymbol{\xi}_{t,j})}{2} \right) \right], \sigma^2 \right),$$

$$\Delta_{t,j}(\boldsymbol{\xi}_{t,j}) = \boldsymbol{\xi}_{t,j} - \operatorname{atan2} \left((\boldsymbol{p}_t - \boldsymbol{s}_j)_y, (\boldsymbol{p}_t - \boldsymbol{s}_j)_x \right).$$

Design. The design $\boldsymbol{\xi}_t = (\xi_{t,1}, \dots, \xi_{t,J})$ sets sensor orientations.

