BEACON: Bayesian Experimental Design for Adaptive and Continual Learning in Non-stationary Environments

Sara Pérez-Vieites

Aalto University
Finnish Center for Artificial Intelligence (FCAI)

7 October 2025

Index

Past work: sequential BED for partially observable dynamical systems

Current/future work

Summary

Sequential Bayesian experimental design (BED)

 \Rightarrow Goal: choose design ξ_t that maximizes the expected information gain (EIG) about parameters θ given history $h_{t-1} = \{\xi_{1:t-1}, y_{1:t-1}\}$.

$$\boldsymbol{\xi}_t^* = \arg\max_{\boldsymbol{\xi}_t \in \Omega} \mathcal{I}(\boldsymbol{\xi}_t)$$

EIG definition (information gain about parameters):

$$\mathcal{I}(\boldsymbol{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{y}_t | \boldsymbol{\xi}_t, h_{t-1})} \left[\log \frac{\underbrace{p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)}_{p(\mathbf{y}_t | \boldsymbol{\xi}_t)}} \right]$$

$$= \mathbb{E}_{\rho(\theta, y_t | \xi_t, h_{t-1})} \left[\log \frac{\rho(y_t | \theta, \xi_t)}{\mathbb{E}_{\rho(\theta | h_{t-1})} \rho(y_t | \theta, \xi_t)} \right]$$

 \Rightarrow The likelihood $p(\mathbf{y}_{\cdot}|\boldsymbol{\theta},\boldsymbol{\xi}_{\cdot})$ is available in closed-form

Sequential Bayesian experimental design (BED)

 \Rightarrow Goal: choose design ξ_t that maximizes the expected information gain (EIG) about parameters θ given history $h_{t-1} = \{\xi_{1:t-1}, y_{1:t-1}\}$.

$$\boldsymbol{\xi}_t^* = \arg\max_{\boldsymbol{\xi}_t \in \Omega} \mathcal{I}(\boldsymbol{\xi}_t)$$

EIG definition (information gain about parameters):

$$\mathcal{I}(\boldsymbol{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{y}_t | \boldsymbol{\xi}_t, h_{t-1})} \left[\log \frac{\overbrace{p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)}^{\text{likelihood}}}{\underbrace{p(\mathbf{y}_t | \boldsymbol{\xi}_t)}_{\text{evidence}}} \right]$$

$$= \mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{y}_{t} | \boldsymbol{\xi}_{t}, h_{t-1})} \left[\log \frac{p(\mathbf{y}_{t} | \boldsymbol{\theta}, \boldsymbol{\xi}_{t})}{\mathbb{E}_{p(\boldsymbol{\theta} | h_{t-1})} p(\mathbf{y}_{t} | \boldsymbol{\theta}, \boldsymbol{\xi}_{t})} \right]$$

 \Rightarrow The likelihood $p(\mathbf{y}_{\cdot}|\boldsymbol{\theta},\boldsymbol{\xi}_{\cdot})$ is available in closed-form

Sequential Bayesian experimental design (BED)

 \Rightarrow Goal: choose design ξ_t that maximizes the expected information gain (EIG) about parameters θ given history $h_{t-1} = \{\xi_{1:t-1}, y_{1:t-1}\}$.

$$\boldsymbol{\xi}_t^* = \arg\max_{\boldsymbol{\xi}_t \in \Omega} \mathcal{I}(\boldsymbol{\xi}_t)$$

EIG definition (information gain about parameters):

$$\mathcal{I}(\boldsymbol{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{y}_t | \boldsymbol{\xi}_t, h_{t-1})} \left[\log \frac{\overbrace{p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)}^{\text{likelihood}}}{\underbrace{p(\mathbf{y}_t | \boldsymbol{\xi}_t)}_{\text{evidence}}} \right]$$

$$= \mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{y}_{t} | \boldsymbol{\xi}_{t}, h_{t-1})} \left[\log \frac{p(\mathbf{y}_{t} | \boldsymbol{\theta}, \boldsymbol{\xi}_{t})}{\mathbb{E}_{p(\boldsymbol{\theta} | h_{t-1})} p(\mathbf{y}_{t} | \boldsymbol{\theta}, \boldsymbol{\xi}_{t})} \right]$$

 \Rightarrow The likelihood $p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)$ is available in closed-form.

State-space models (SSMs)

Many real systems are partially observable dynamical systems, where data are generated via latent states x_t :

$$\begin{array}{llll} \text{(state)} & \textbf{\textit{x}}_t & \sim & f(\textbf{\textit{x}}_t|\textbf{\textit{x}}_{t-1}, \theta, \pmb{\xi}_t), \\ \\ \text{(observation)} & \textbf{\textit{y}}_t & \sim & g(\textbf{\textit{y}}_t|\textbf{\textit{x}}_t, \theta, \pmb{\xi}_t). \end{array}$$

EIG objective:

$$\mathcal{I}(\boldsymbol{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{y}_t, \mathbf{x}_{0:t} | \boldsymbol{\xi}_t, h_{t-1})} \left[\log \frac{p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)}{p(\mathbf{y}_t | \boldsymbol{\xi}_t)} \right]$$
(1)

(likelihood)
$$p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t) = \mathbb{E}_{p(\mathbf{x}_{0:t} | \boldsymbol{\theta}, \boldsymbol{\xi}_t)} [g(\mathbf{y}_t | \mathbf{x}_t, \boldsymbol{\theta}, \boldsymbol{\xi}_t)],$$
 (2)

(evidence)
$$p(\mathbf{y}_t|\mathbf{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta}|h_{t-1})p(\mathbf{x}_{0:t}|\boldsymbol{\theta},\mathbf{\xi}_t)}[g(\mathbf{y}_t|\mathbf{x}_t,\boldsymbol{\theta},\mathbf{\xi}_t)]. \tag{3}$$

 \Rightarrow Requires marginalization over $x_{0:t} \rightarrow$ intractable likelihood

State-space models (SSMs)

Many real systems are partially observable dynamical systems, where data are generated via latent states x_t :

$$\begin{array}{llll} \text{(state)} & \textbf{\textit{x}}_t & \sim & f(\textbf{\textit{x}}_t|\textbf{\textit{x}}_{t-1},\theta,\boldsymbol{\xi}_t), \\ \\ \text{(observation)} & \textbf{\textit{y}}_t & \sim & g(\textbf{\textit{y}}_t|\textbf{\textit{x}}_t,\theta,\boldsymbol{\xi}_t). \end{array}$$

EIG objective:

$$\mathcal{I}(\boldsymbol{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{y}_t, \mathbf{x}_{0:t} | \boldsymbol{\xi}_t, h_{t-1})} \left[\log \frac{p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)}{p(\mathbf{y}_t | \boldsymbol{\xi}_t)} \right]$$
(1)

(likelihood)
$$p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t) = \mathbb{E}_{p(\mathbf{x}_{0:t} | \boldsymbol{\theta}, \boldsymbol{\xi}_t)} [g(\mathbf{y}_t | \mathbf{x}_t, \boldsymbol{\theta}, \boldsymbol{\xi}_t)],$$
 (2)

(evidence)
$$p(\mathbf{y}_t|\mathbf{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta}|h_{t-1})p(\mathbf{x}_{0:t}|\boldsymbol{\theta},\mathbf{\xi}_t)}[g(\mathbf{y}_t|\mathbf{x}_t,\boldsymbol{\theta},\mathbf{\xi}_t)]. \tag{3}$$

 \Rightarrow Requires marginalization over $x_{0:t} \rightarrow$ intractable likelihood

State-space models (SSMs)

Many real systems are partially observable dynamical systems, where data are generated via latent states x_t :

EIG objective:

$$\mathcal{I}(\boldsymbol{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta}, \mathbf{y}_t, \mathbf{x}_{0:t} | \boldsymbol{\xi}_t, h_{t-1})} \left[\log \frac{p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)}{p(\mathbf{y}_t | \boldsymbol{\xi}_t)} \right]$$
(1)

(likelihood)
$$p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t) = \mathbb{E}_{p(\mathbf{x}_{0:t} | \boldsymbol{\theta}, \boldsymbol{\xi}_t)} [g(\mathbf{y}_t | \mathbf{x}_t, \boldsymbol{\theta}, \boldsymbol{\xi}_t)],$$
 (2)

(evidence)
$$p(\mathbf{y}_t|\mathbf{\xi}_t) = \mathbb{E}_{p(\boldsymbol{\theta}|h_{t-1})p(\mathbf{x}_{0:t}|\boldsymbol{\theta},\mathbf{\xi}_t)}[g(\mathbf{y}_t|\mathbf{x}_t,\boldsymbol{\theta},\mathbf{\xi}_t)]. \tag{3}$$

 \Rightarrow Requires marginalization over $x_{0:t} \rightarrow$ intractable likelihood.

Sampling challenge and nested particle filters (NPFs)

Problem: Sample full trajectories $x_{0:t}$ at each new time step—computational cost grows quadratically, $\mathcal{O}(t^2)$.

Goal: Maintain a joint posterior $p(\theta, x_{0:t}|h_t)$ that can be updated recursively as new data arrive.

Approach: nested particle filters $(\mathsf{NPFs})^1$

- Two-layer structure ($M \times N$ particles) to approximate $p(d\theta, d\mathbf{x}_{0:t} | h_t)$.
- Updates one step forward no need to replay past data, linear cost $\mathcal{O}(t)$
- Asymptotic convergence guarantees as number of particles $M, N \rightarrow \infty$

 \Rightarrow Recursive and consistent estimator of EIG.

Problem: Sample full trajectories $x_{0:t}$ at each new time step—computational cost grows quadratically, $\mathcal{O}(t^2)$.

Goal: Maintain a joint posterior $p(\theta, x_{0:t}|h_t)$ that can be updated recursively as new data arrive.

Approach: nested particle filters $(\mathsf{NPFs})^1$

- Two-layer structure $(M \times N \text{ particles})$ to approximate $p(d\theta, d\mathbf{x}_{0:t} | h_t)$.
- Updates one step forward no need to replay past data, linear cost $\mathcal{O}(t)$.
- Asymptotic convergence guarantees as number of particles $M, N \rightarrow \infty$

 \Rightarrow Recursive and consistent estimator of EIG.

Sampling challenge and nested particle filters (NPFs)

Problem: Sample full trajectories $x_{0:t}$ at each new time step—computational cost grows quadratically, $\mathcal{O}(t^2)$.

Goal: Maintain a joint posterior $p(\theta, x_{0:t}|h_t)$ that can be updated recursively as new data arrive.

Approach: nested particle filters (NPFs)¹

- Two-layer structure ($M \times N$ particles) to approximate $p(d\theta, d\mathbf{x}_{0:t} | h_t)$.
- Updates one step forward no need to replay past data, linear cost $\mathcal{O}(t)$.
- Asymptotic convergence guarantees as number of particles $M, N \rightarrow \infty$.
- ⇒ Recursive and consistent estimator of EIG.

Algorithm for partially observable systems

Key idea: Combine EIG optimization with online inference via NPFs.

At each time t

- 1. Optimize design ξ_t using stochastic gradient ascent on $\widehat{\mathcal{I}}(\xi_t)$.
- 2. Collect data y_t under optimized design
- 3. Update posterior via nested particle filter (jitter, propagate, resample).

 \Rightarrow Sequential design + inference with linear cost in T.

Algorithm for partially observable systems

Key idea: Combine EIG optimization with online inference via NPFs.

At each time t:

- 1. Optimize design ξ_t using stochastic gradient ascent on $\widehat{\mathcal{I}}(\xi_t)$.
- 2. Collect data y_t under optimized design.
- 3. Update posterior via nested particle filter (jitter, propagate, resample).

 \Rightarrow Sequential design + inference with linear cost in T.

Algorithm for partially observable systems

Key idea: Combine EIG optimization with online inference via NPFs.

At each time t:

- 1. Optimize design ξ_t using stochastic gradient ascent on $\widehat{\mathcal{I}}(\xi_t)$.
- 2. Collect data y_t under optimized design.
- 3. Update posterior via nested particle filter (jitter, propagate, resample).

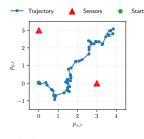
 \Rightarrow Sequential design + inference with linear cost in T.

\Rightarrow State dynamics.

$$\boldsymbol{x}_{t} = \boldsymbol{x}_{t-1} + \Delta t \begin{bmatrix} v_{x} \cos \phi_{t-1} \\ v_{y} \sin \phi_{t-1} \\ v_{\phi} \end{bmatrix} + \epsilon_{t}$$

$$\mathbf{x}_t = (p_{x,t}, p_{y,t}, \phi_t)^{\mathsf{T}}, \ \boldsymbol{\theta} = (\mathbf{v}_x, \mathbf{v}_y)^{\mathsf{T}}, \ \text{and}$$

 $\boldsymbol{\epsilon}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}).$



 \Rightarrow **Observation model.** J fixed sensors at positions (s_x^J, s_y^J)

$$\mu_{t,j} = b + \frac{\alpha_j}{m + \|(p_{x,t}, p_{y,t}) - (s_x^j, s_y^j)\|^2} \underbrace{\left(\frac{1 + d\cos\Delta_{t,j}}{1 + d}\right)^k}_{}$$

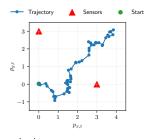
• $\Delta_{t,j}$ is angular mismatch between sensor orientation and source direction

• Design: sensor orientations $\xi_t = (\xi_{t,1}, \dots, \xi_{t,J})$.

 \Rightarrow State dynamics.

$$\boldsymbol{x}_{t} = \boldsymbol{x}_{t-1} + \Delta t \begin{bmatrix} v_{x} \cos \phi_{t-1} \\ v_{y} \sin \phi_{t-1} \\ v_{\phi} \end{bmatrix} + \epsilon_{t}$$

$$\mathbf{x}_t = (p_{x,t}, p_{y,t}, \phi_t)^\mathsf{T}, \ \boldsymbol{\theta} = (v_x, v_y)^\mathsf{T}, \text{ and } \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}).$$

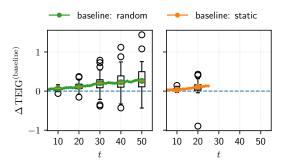


 \Rightarrow **Observation model.** J fixed sensors at positions (s_x^J, s_y^J) :

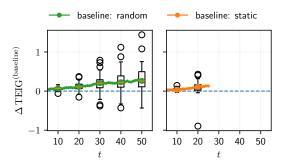
$$\log y_{t,j} | \mathbf{x}_t, \boldsymbol{\theta}, \boldsymbol{\xi}_t \sim \mathcal{N}(\log \mu_{t,j}, \sigma^2),$$

$$\mu_{t,j} = b + \underbrace{\frac{\alpha_j}{m + \underbrace{\|(p_{\mathsf{X},t},p_{\mathsf{Y},t}) - (s_{\mathsf{X}}^j,s_{\mathsf{Y}}^j)\|^2}_{\text{distance to source}}} \underbrace{\left(\frac{1 + d\cos\Delta_{t,j}}{1 + d}\right)^k}_{\text{directional sensitivity}},$$

- $\Delta_{t,j}$ is angular mismatch between sensor orientation and source direction.
- Design: sensor orientations $\boldsymbol{\xi}_t = (\xi_{t,1}, \dots, \xi_{t,J})$.



- $\Delta \mathsf{TEIG}^{(\mathsf{baseline})} = \sum_{\tau=1}^t \left(\widehat{\mathcal{I}}(\boldsymbol{\xi}_{\tau}^{\star}) \widehat{\mathcal{I}}(\boldsymbol{\xi}_{\tau}^{(\mathsf{baseline})}) \right)$
- Average over 50 seeds.
- Random = random designs.
- Static = static BED version of our approach.
- ⇒ Advantage over baselines grows with t



- $\Delta \mathsf{TEIG}^{(\mathsf{baseline})} = \sum_{\tau=1}^t \left(\widehat{\mathcal{I}}(\boldsymbol{\xi}_{\tau}^{\star}) \widehat{\mathcal{I}}(\boldsymbol{\xi}_{\tau}^{(\mathsf{baseline})}) \right)$
- Average over 50 seeds.
- Random = random designs.
- Static = static BED version of our approach.
- \Rightarrow Advantage over baselines grows with t.

Summary

- Introduced a Bayesian experimental design framework for partially observable dynamical systems.
- Derived recursive EIG and gradient estimators using nested particle filters for online optimization and inference.

 Pérez-Vieites, S., Iqbal, S., Särkkä, S., & Baumann, D. Online Bayesian experimental design for partially observable dynamical systems. Submitted.

Summary

- Introduced a Bayesian experimental design framework for partially observable dynamical systems.
- Derived recursive EIG and gradient estimators using nested particle filters for online optimization and inference.

 Pérez-Vieites, S., Iqbal, S., Särkkä, S., & Baumann, D. Online Bayesian experimental design for partially observable dynamical systems. Submitted.

Index

Past work: sequential BED for partially observable dynamical systems

Current/future work

Summary

Vision: Adaptive and Robust BED

Vision: Extend BED beyond short, controlled experiments to realistic deployments.

Three complementary directions:

- Objective 1: Continual adaptation.
- Objective 2: Non-ergodic dynamics.
- Objective 3: Non-stationary dynamics.

Vision: Adaptive and Robust BED

Vision: Extend BED beyond short, controlled experiments to realistic deployments.

Three complementary directions:

- Objective 1: Continual adaptation.
- Objective 2: Non-ergodic dynamics.
- Objective 3: Non-stationary dynamics.

Most BED formulations assume:

• Finite horizon: small, fixed number of experiments ($T \ll \infty$).

- Changing environments: new conditions emerge that fixed policies cannot adapt to.
- Complex "big worlds": even stationary systems can appear non-stationary when high-dimensional or heavy-tailed.

Most BED formulations assume:

• Finite horizon: small, fixed number of experiments ($T \ll \infty$).

- Changing environments: new conditions emerge that fixed policies cannot adapt to.
- Complex "big worlds": even stationary systems can appear non-stationary when high-dimensional or heavy-tailed.

Most BED formulations assume:

• Finite horizon: small, fixed number of experiments ($T \ll \infty$).

- Changing environments: new conditions emerge that fixed policies cannot adapt to.
- Complex "big worlds": even stationary systems can appear non-stationary when high-dimensional or heavy-tailed.

Most BED formulations assume:

• Finite horizon: small, fixed number of experiments ($T \ll \infty$).

- Changing environments: new conditions emerge that fixed policies cannot adapt to.
- Complex "big worlds": even stationary systems can appear non-stationary when high-dimensional or heavy-tailed.

Goal: Given a design policy, π_{ϕ} , adapt policy parameters ϕ over time while preserving critical knowledge.

$$\frac{\lambda}{2} \sum_{i} F_i (\phi_{i,t} - \phi_{i,t-1})^2$$

Variational continual learning (VCL)⁵: variational inference penalty via

$$\mathsf{KL}\big(q_t(\phi) \, \| \, q_{t-1}(\phi)\big)$$

Goal: Given a design policy, π_{ϕ} , adapt policy parameters ϕ over time while preserving critical knowledge.

Challenge: stability-plasticity dilemma³

too stable \rightarrow no adaptation; too adaptive \rightarrow forgetting.

$$\frac{\lambda}{2} \sum_{i} F_i (\phi_{i,t} - \phi_{i,t-1})^2$$

Variational continual learning (VCL)⁵: variational inference penalty via

$$\mathsf{KL}\big(q_t(\phi) \, \| \, q_{t-1}(\phi)\big)$$

³Wang et al., (2024). A comprehensive survey of continual learning: Theory, method and application. TPAMI.

Goal: Given a design policy, π_{ϕ} , adapt policy parameters ϕ over time while preserving critical knowledge.

Challenge: stability-plasticity dilemma³

too stable \rightarrow no adaptation; too adaptive \rightarrow forgetting.

Idea: regularisation-based CL

Elastic weight consolidation (EWC)⁴: weight regularisation using Fisher information.

$$\frac{\lambda}{2} \sum_{i} F_i (\phi_{i,t} - \phi_{i,t-1})^2$$

Variational continual learning (VCL)⁵: variational inference penalty via

$$\mathsf{KL}\big(q_t(\phi) \, \| \, q_{t-1}(\phi)\big)$$

³Wang et al., (2024). A comprehensive survey of continual learning: Theory, method and application. TPAMI.

⁴Kirkpatrick et al., (2017). Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. of Sci.

⁵Nguyen et al., (2018). Variational continual learning. ICLR.

Goal: Given a design policy, π_{ϕ} , adapt policy parameters ϕ over time while preserving critical knowledge.

Challenge: stability-plasticity dilemma³

too stable \rightarrow no adaptation; too adaptive \rightarrow forgetting.

Idea: regularisation-based CL

Elastic weight consolidation (EWC)⁴: weight regularisation using Fisher information.

$$\frac{\lambda}{2} \sum_{i} F_i (\phi_{i,t} - \phi_{i,t-1})^2$$

Variational continual learning (VCL)⁵: variational inference penalty via

$$\mathsf{KL}\big(q_t(\phi) \, \| \, q_{t-1}(\phi)\big)$$

⇒ Avoiding high memory cost of replay buffers.

³Wang et al., (2024). A comprehensive survey of continual learning: Theory, method and application. TPAMI.

⁴Kirkpatrick et al., (2017). Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. of Sci.

Most BED formulations assume:

• Ergodicity: time averages ≈ ensemble averages.

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^T y_{\cdot,t} = \lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N y_{i,\cdot}.$$

Problem: When ergodicity breaks, incremental utilities misalign with total information gain. Standard BED objectives become unreliable.

- Multimodal or heavy-tailed observations → trajectories get trapped in one mode.
- Irreversible or "dead-end" states (e.g. stuck robots, terminated experiments).

Most BED formulations assume:

• Ergodicity: time averages ≈ ensemble averages.

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^T y_{\cdot,t} = \lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N y_{i,\cdot}.$$

Problem: When ergodicity breaks, incremental utilities misalign with total information gain. Standard BED objectives become unreliable.

- Multimodal or heavy-tailed observations → trajectories get trapped in one mode.
- Irreversible or "dead-end" states (e.g. stuck robots, terminated experiments).

Most BED formulations assume:

• Ergodicity: time averages ≈ ensemble averages.

$$\lim_{T\to\infty}\frac{1}{T}\sum_{t=1}^T y_{\cdot,t} = \lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N y_{i,\cdot}.$$

Problem: When ergodicity breaks, incremental utilities misalign with total information gain. Standard BED objectives become unreliable.

- Multimodal or heavy-tailed observations → trajectories get trapped in one mode.
- Irreversible or "dead-end" states (e.g. stuck robots, terminated experiments).

Goal: Design utilities that remain reliable when ergodicity fails.

Idea: Learn transformations of incremental utilities that restore alignment between expected and time-averaged values.⁶

- Detect and diagnose loss of ergodicity during operation.
- Learn transformations $\mathcal{T}(U_t)$ that make incremental EIG ergodic again

$$\mathbb{E}[\mathcal{T}(U_t)] \approx \frac{1}{\mathcal{T}} \sum_t \mathcal{T}(U_t)$$

Goal: Design utilities that remain reliable when ergodicity fails.

Idea: Learn transformations of incremental utilities that restore alignment between expected and time-averaged values.⁶

- Detect and diagnose loss of ergodicity during operation.
- Learn transformations $\mathcal{T}(U_t)$ that make incremental EIG ergodic again:

$$\mathbb{E}[\mathcal{T}(U_t)] \approx \frac{1}{T} \sum_t \mathcal{T}(U_t)$$

Most BED formulations assume:

• Stationary model: known and fixed likelihood $p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)$.

Problem: Static models become misspecified $^\prime$ as the environment evolves.

- Parameter drift: gradual changes in system behaviour (e.g. component wear, patient response evolution).
- Regime switching: abrupt transitions between modes (e.g. equipment faults, environment changes).

Example: Industrial prognostics — from slow degradation to sudden faults.

Most BED formulations assume:

• Stationary model: known and fixed likelihood $p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)$.

Problem: Static models become misspecified⁷ as the environment evolves.

- Parameter drift: gradual changes in system behaviour (e.g. component wear, patient response evolution).
- Regime switching: abrupt transitions between modes (e.g. equipment faults, environment changes).

Example: Industrial prognostics — from slow degradation to sudden faults.

Most BED formulations assume:

• Stationary model: known and fixed likelihood $p(\mathbf{y}_t | \boldsymbol{\theta}, \boldsymbol{\xi}_t)$.

Problem: Static models become misspecified⁷ as the environment evolves.

- Parameter drift: gradual changes in system behaviour (e.g. component wear, patient response evolution).
- Regime switching: abrupt transitions between modes (e.g. equipment faults, environment changes).

Example: *Industrial prognostics* — from slow degradation to sudden faults.

Goal: Enable BED under evolving dynamics, maintaining model validity and design relevance

Approach: Incorporate ideas from Bayesian filtering and changepoint detection⁸.

- Gradual drift: latent parameters θ_t evolve via transition $p(\theta_t | \theta_{t-1})$ (online filtering).
- Regime switching: latent mode ψ_t with transition $p(\psi_t|\psi_{t-1})$ enables changepoint-aware designs.

Goal: Enable BED under evolving dynamics, maintaining model validity and design relevance

Approach: Incorporate ideas from Bayesian filtering and changepoint detection⁸.

- Gradual drift: latent parameters θ_t evolve via transition $p(\theta_t | \theta_{t-1})$ (online filtering).
- Regime switching: latent mode ψ_t with transition $p(\psi_t|\psi_{t-1})$ enables changepoint-aware designs.

Summary

Towards adaptive, robust, and realistic Bayesian experimental design (BED).

- Objective 1: Continual adaptation adapt policies over long deployments without retraining.
- Objective 2: Non-ergodic dynamics reliable/robust objectives under non-ergodic dynamics.
- Objective 3: Non-stationary dynamics maintain validity under evolving environments.

Thank you!

References

- Crisan & Míguez (2018). Nested particle filters for online parameter estimation in discrete-time state-space Markov models. Bernoulli, 24(4A), 3039–3086.
- Ivanova et al., (2024). Step-dad: Semi-amortized policy-based Bayesian experimental design. ICLR Workshop on Data-centric Machine Learning Research (DMLR).
- Wang et al., (2024). A comprehensive survey of continual learning: Theory, method and application. IEEE TPAMI
- Kirkpatrick et al. (2017). Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. (PNAS), 114(13), 3521–3526.
- Nguyen et al. (2018). Variational continual learning. Int. Conf. on Learning Representations (ICLR).
- Baumann et al. (2025). Reinforcement learning with non-ergodic reward increments: robustness via ergodicity transformations. Trans. Machine Learning Research (TMLR).
- Forster et al., (2025). Improving Robustness to Model Misspecification in Bayesian Experimental Design. 7th Symposium on Advances in Approximate Bayesian Inference Workshop Track.
- Duran-Martin (2025). Adaptive, robust and scalable Bayesian filtering for online learning. PhD Thesis, Queen Mary University of London.