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Sequential Bayesian experimental design (BED)

⇒ Goal: choose design ξt that maximizes the expected information gain (EIG)

about parameters θ given history ht−1 = {ξ1∶t−1, y1∶t−1}.

ξ⋆t = argmax
ξt∈Ω

I(ξt)

EIG definition (information gain about parameters):

I(ξt) = Ep(θ,y t ∣ξt ,ht−1)

⎡⎢⎢⎢⎢⎣
log

likelihood
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p(y t ∣θ,ξt)
p(y t ∣ξt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
evidence

⎤⎥⎥⎥⎥⎦

= Ep(θ,y t ∣ξt ,ht−1)

⎡⎢⎢⎢⎢⎣
log

p(y t ∣θ,ξt)
Ep(θ∣ht−1)p(y t ∣θ,ξt)

⎤⎥⎥⎥⎥⎦

⇒ The likelihood p(y t ∣θ,ξt) is available in closed-form.



3/19

Past work: sequential BED for partially observable dynamical systems Current/future work Summary

Sequential Bayesian experimental design (BED)

⇒ Goal: choose design ξt that maximizes the expected information gain (EIG)

about parameters θ given history ht−1 = {ξ1∶t−1, y1∶t−1}.

ξ⋆t = argmax
ξt∈Ω

I(ξt)

EIG definition (information gain about parameters):

I(ξt) = Ep(θ,y t ∣ξt ,ht−1)

⎡⎢⎢⎢⎢⎣
log

likelihood
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p(y t ∣θ,ξt)
p(y t ∣ξt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
evidence

⎤⎥⎥⎥⎥⎦

= Ep(θ,y t ∣ξt ,ht−1)

⎡⎢⎢⎢⎢⎣
log

p(y t ∣θ,ξt)
Ep(θ∣ht−1)p(y t ∣θ,ξt)

⎤⎥⎥⎥⎥⎦

⇒ The likelihood p(y t ∣θ,ξt) is available in closed-form.



3/19

Past work: sequential BED for partially observable dynamical systems Current/future work Summary

Sequential Bayesian experimental design (BED)

⇒ Goal: choose design ξt that maximizes the expected information gain (EIG)

about parameters θ given history ht−1 = {ξ1∶t−1, y1∶t−1}.

ξ⋆t = argmax
ξt∈Ω

I(ξt)

EIG definition (information gain about parameters):

I(ξt) = Ep(θ,y t ∣ξt ,ht−1)

⎡⎢⎢⎢⎢⎣
log

likelihood
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p(y t ∣θ,ξt)
p(y t ∣ξt)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
evidence

⎤⎥⎥⎥⎥⎦

= Ep(θ,y t ∣ξt ,ht−1)

⎡⎢⎢⎢⎢⎣
log

p(y t ∣θ,ξt)
Ep(θ∣ht−1)p(y t ∣θ,ξt)

⎤⎥⎥⎥⎥⎦

⇒ The likelihood p(y t ∣θ,ξt) is available in closed-form.



4/19

Past work: sequential BED for partially observable dynamical systems Current/future work Summary

State-space models (SSMs)

Many real systems are partially observable dynamical systems, where data are
generated via latent states x t :

(state) x t ∼ f (x t ∣x t−1,θ,ξt),
(observation) y t ∼ g(y t ∣x t ,θ,ξt).

EIG objective:

I(ξt) = Ep(θ,y t ,x0∶t ∣ξt ,ht−1)

⎡⎢⎢⎢⎢⎣
log

p(y t ∣θ,ξt)
p(y t ∣ξt)

⎤⎥⎥⎥⎥⎦
(1)

(likelihood) p(y t ∣θ,ξt) = Ep(x0∶t ∣θ,ξt)
[g(y t ∣x t ,θ,ξt) ], (2)

(evidence) p(y t ∣ξt) = Ep(θ∣ht−1)p(x0∶t ∣θ,ξt)
[g(y t ∣x t ,θ,ξt) ]. (3)

⇒ Requires marginalization over x0∶t → intractable likelihood.
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Sampling challenge and nested particle filters (NPFs)

Problem: Sample full trajectories x0∶t at each new time step—computational
cost grows quadratically, O(t2).

Goal: Maintain a joint posterior p(θ, x0∶t ∣ht) that can be updated recursively as
new data arrive.

Approach: nested particle filters (NPFs)1

● Two-layer structure (M ×N particles) to approximate p(dθ,dx0∶t ∣ht).
● Updates one step forward — no need to replay past data, linear cost O(t).
● Asymptotic convergence guarantees as number of particles M,N→∞.

⇒ Recursive and consistent estimator of EIG.

1Crisan & Mı́guez (2018). Nested particle filters for online parameter estimation in discrete-time state-space
Markov models. Bernoulli.
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Algorithm for partially observable systems

Key idea: Combine EIG optimization with online inference via NPFs.

At each time t:

1. Optimize design ξt using stochastic gradient ascent on Î(ξt).
2. Collect data y t under optimized design.

3. Update posterior via nested particle filter (jitter, propagate, resample).

⇒ Sequential design + inference with linear cost in T .



6/19

Past work: sequential BED for partially observable dynamical systems Current/future work Summary

Algorithm for partially observable systems

Key idea: Combine EIG optimization with online inference via NPFs.

At each time t:

1. Optimize design ξt using stochastic gradient ascent on Î(ξt).
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Example: moving source model

⇒ State dynamics.

x t = x t−1 +∆t

⎡⎢⎢⎢⎢⎢⎢⎢⎣

vx cosϕt−1

vy sinϕt−1

vϕ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ ϵt

x t = (px,t ,py,t , ϕt)⊺, θ = (vx , vy )⊺, and
ϵt ∼ N(0,Q).

0 1 2 3 4
px,t

−1

0

1

2

3

p
y
,t

Trajectory Sensors Start

⇒ Observation model. J fixed sensors at positions (s jx , s jy ):

log yt,j ∣x t ,θ,ξt ∼ N( logµt,j , σ2),

µt,j = b +
αj

m + ∥(px,t ,py,t) − (s jx , s jy )∥2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

distance to source

(
1 + d cos∆t,j

1 + d
)
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
directional sensitivity

,

● ∆t,j is angular mismatch between sensor orientation and source direction.

● Design: sensor orientations ξt = (ξt,1, . . . , ξt,J).
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Example: moving source model

10 20 30 40 50

t

−1

0

1

∆
T

E
IG

(b
a
se

li
n
e
)

10 20 30 40 50

t

baseline: random baseline: static

● ∆TEIG(baseline) = ∑t
τ=1 (Î(ξ⋆τ ) − Î(ξ

(baseline)
τ ))

● Average over 50 seeds.

● Random = random designs.

● Static = static BED version of our approach.

⇒ Advantage over baselines grows with t.
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Summary

● Introduced a Bayesian experimental design framework for partially

observable dynamical systems.

● Derived recursive EIG and gradient estimators using nested particle filters for
online optimization and inference.

● Pérez-Vieites, S., Iqbal, S., Särkkä, S., & Baumann, D. Online Bayesian

experimental design for partially observable dynamical systems. Submitted.
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Vision: Adaptive and Robust BED

Vision: Extend BED beyond short, controlled experiments to realistic
deployments.

Three complementary directions:

● Objective 1: Continual adaptation.

● Objective 2: Non-ergodic dynamics.

● Objective 3: Non-stationary dynamics.
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Objective 1: Continual adaptation

Most BED formulations assume:

● Finite horizon: small, fixed number of experiments (T ≪∞).

Problem: In long runs, design policies degrade2; static BED infeasible due to
high dimension in the design space.

● Changing environments: new conditions emerge that fixed policies cannot
adapt to.

● Complex “big worlds”: even stationary systems can appear non-stationary
when high-dimensional or heavy-tailed.

2Ivanova et al., (2024). Step-dad: Semi-amortized policy-based Bayesian experimental design. ICLR Workshop
on Data-centric Machine Learning Research (DMLR).
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Objective 1: Continual adaptation

Goal: Given a design policy, πϕ, adapt policy parameters ϕ over time while
preserving critical knowledge.

Challenge: stability–plasticity dilemma3

too stable → no adaptation; too adaptive → forgetting.

Idea: regularisation-based CL

● Elastic weight consolidation (EWC)4: weight regularisation using Fisher
information,

λ

2
∑
i

Fi(ϕi,t − ϕi,t−1)2

● Variational continual learning (VCL)5: variational inference penalty via

KL(qt(ϕ) ∥qt−1(ϕ))

⇒ Avoiding high memory cost of replay buffers.

3Wang et al., (2024). A comprehensive survey of continual learning: Theory, method and application. TPAMI.
4Kirkpatrick et al., (2017). Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. of Sci.
5Nguyen et al., (2018). Variational continual learning. ICLR.
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Objective 2: Non-ergodic dynamics

Most BED formulations assume:

● Ergodicity: time averages ≈ ensemble averages.

lim
T→∞

1

T

T

∑
t=1

y⋅,t = lim
N→∞

1

N

N

∑
i=1

yi,⋅.

Problem: When ergodicity breaks, incremental utilities misalign with total
information gain. Standard BED objectives become unreliable.

● Multimodal or heavy-tailed observations → trajectories get trapped in one
mode.

● Irreversible or “dead-end” states (e.g. stuck robots, terminated
experiments).
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Objective 2: Non-ergodic dynamics

Goal: Design utilities that remain reliable when ergodicity fails.

Idea: Learn transformations of incremental utilities that restore alignment
between expected and time-averaged values.6

● Detect and diagnose loss of ergodicity during operation.

● Learn transformations T (Ut) that make incremental EIG ergodic again:

E[T (Ut)] ≈
1

T
∑
t
T (Ut)

6Baumann et al. (2025). Reinforcement learning with non-ergodic reward increments. TMLR.
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Objective 3: Non-stationary dynamics

Most BED formulations assume:

● Stationary model: known and fixed likelihood p(y t ∣θ,ξt).

Problem: Static models become misspecified7 as the environment evolves.

● Parameter drift: gradual changes in system behaviour (e.g. component
wear, patient response evolution).

● Regime switching: abrupt transitions between modes (e.g. equipment
faults, environment changes).

Example: Industrial prognostics — from slow degradation to sudden faults.

7Forster et al. (2025). Improving Robustness to Model Misspecification in Bayesian Experimental Design.
Symp. Advances in Approximate Bayesian Inference.
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Objective 3: Non-stationary dynamics

Goal: Enable BED under evolving dynamics, maintaining model validity and
design relevance

Approach: Incorporate ideas from Bayesian filtering and changepoint detection8.

● Gradual drift: latent parameters θt evolve via transition p(θt ∣θt−1) (online
filtering).

● Regime switching: latent mode ψt with transition p(ψt ∣ψt−1) enables
changepoint-aware designs.

8Duran-Martin (2025). Adaptive, robust and scalable Bayesian filtering for online learning. PhD Thesis, Queen
Mary University of London.
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Summary

Towards adaptive, robust, and realistic Bayesian experimental design (BED).

● Objective 1: Continual adaptation — adapt policies over long deployments
without retraining.

● Objective 2: Non-ergodic dynamics — reliable/robust objectives under
non-ergodic dynamics.

● Objective 3: Non-stationary dynamics — maintain validity under evolving
environments.

Thank you!
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