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Sequential Bayesian experimental design (BED)

= Goal: choose design &, that maximizes the expected information gain (EIG)
about parameters 6 given history he_1 = {€1.;_1,¥1.0-1}-

& =arg max (&)
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Sequential Bayesian experimental design (BED)

= Goal: choose design &, that maximizes the expected information gain (EIG)
about parameters 6 given history he_1 = {€1.;_1,¥1.0-1}-

& =arg max (&)

EIG definition (information gain about parameters):

likelihood
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Sequential Bayesian experimental design (BED)

= Goal: choose design &, that maximizes the expected information gain (EIG)
about parameters 6 given history he_1 = {€1.;_1,¥1.0-1}-

& =arg max (&)

EIG definition (information gain about parameters):

likelihood

—_—
P(y:|0,€:)
p(y:l€:)

[
evidence

(&)= ]Ep(e,ytinhzl)li log ————~

p(y:16,&,) ]

=E 0, he_ |0g
P(O.yileehe 1)[ Epcoh_1)P(¥:10,€:)

= The likelihood p(y,|0,&,) is available in closed-form.
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State-space models (SSMs)

Many real systems are partially observable dynamical systems, where data are
generated via latent states x;:

(state)  x: ~ f(x¢|xe-1,0,&,),

(observation) y, ~ g(y:|xt,0,&,).
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State-space models (SSMs)

Many real systems are partially observable dynamical systems, where data are
generated via latent states x;:

(state)  x: ~ f(x¢|xe-1,0,&,),

(observation) y, ~ g(y:|xt,0,&,).

EIG objective:
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State-space models (SSMs)

Many real systems are partially observable dynamical systems, where data are
generated via latent states x;:

(state)  x: ~ f(x¢|xe-1,0,&,),

(observation) y, ~ g(y:|xt,0,&,).

EIG objective:

07£
(¢, - E,,w,yt,xozdgt,m[ jog ’M] W
(IlkellhOOd) p(yt|9’£t) :Ep(x[):[\ﬂ.gt)[g(yt|xt79751‘)]7 (2)
(evidence)  p(¥¢l€:) = Ep(oih,_1)p(xol0.c,) [ &(Ye|Xe:0,6,) |- (3)

= Requires marginalization over xq.; — intractable likelihood.
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Sampling challenge and nested particle filters (NPFs)

Problem: Sample full trajectories xo.; at each new time step—computational
cost grows quadratically, O(t?).
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Problem: Sample full trajectories xo.; at each new time step—computational
cost grows quadratically, O(t?).

Goal: Maintain a joint posterior p(0, xo.:| h:) that can be updated recursively as
new data arrive.
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Sampling challenge and nested particle filters (NPFs)

Problem: Sample full trajectories xo.; at each new time step—computational
cost grows quadratically, O(t?).

Goal: Maintain a joint posterior p(0, xo.:| h:) that can be updated recursively as
new data arrive.

Approach: nested particle filters (NPFs)!
® Two-layer structure (M x N particles) to approximate p(d@,dxo:t | ht).
® Updates one step forward — no need to replay past data, linear cost O(t).

® Asymptotic convergence guarantees as number of particles M, N — co.

= Recursive and consistent estimator of EIG.

]'Crisan & Miguez (2018). Nested particle filters for online parameter estimation in discrete-time state-space
Markov models. Bernoulli.
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Algorithm for partially observable systems

Key idea: Combine EIG optimization with online inference via NPFs.
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Algorithm for partially observable systems

Key idea: Combine EIG optimization with online inference via NPFs.

At each time t:
1. Optimize design £, using stochastic gradient ascent on f({t).
2. Collect data y, under optimized design.

3. Update posterior via nested particle filter (jitter, propagate, resample).
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Algorithm for partially observable systems

Key idea: Combine EIG optimization with online inference via NPFs.

At each time t:
1. Optimize design £, using stochastic gradient ascent on f({t).
2. Collect data y, under optimized design.

3. Update posterior via nested particle filter (jitter, propagate, resample).

= Sequential design + inference with linear cost in T.
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Example: moving source model

—e— Trajectory A Sensors ® Start
= State dynamics. o A
Vi COS Py_1 2
Xt =Xe_1+At| vysinge_1 [+ € ERE
Vo 04 A
Y
T T
xt = (px,t; Py,t;$t)T, 0 = (v, v)", and S S —

€t NN(O,Q) Pat
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Example: moving source model

—e— Trajectory A Sensors ® Start
= State dynamics. o a
Vy COS ¢p_1 2
Xt =Xe_1+At| vysinge_1 [+ € ERE
Vo 04 A
By
T T
Xt:(Px,t:Py,tyd)t) ' GZ(VX-,Vy) ’ and v T T T T
€t NN(O,Q) Pt

= Observation model. J fixed sensors at positions (si,sj):

Iogyt,j|xt’ 07€t ~ N( |0g#t,j7 02)’

K
o 1+dcosAt7j)
Mt,j:b+ ( »

m+ [ (Pt Py.) = (sh ) |2 1+d

distance to source

directional sensitivity

® A,; is angular mismatch between sensor orientation and source direction.

e Design: sensor orientations &, = (é¢.1,---,&.J)-
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[e]e]

Example: moving source model

—&— baseline: random

—&— baseline: static

\E)E -S’g"
= Jwaowet BT __
=
<
71 T T T T T T 9 T T T
10 20 30 40 50 10 20 30 40 50
t t

° ATE'G(baseIine) _ Fr=1 (T(E:—) _ T(Eg_baseline)))

® Average over 50 seeds.
® Random = random designs.
[ )

Static = static BED version of our approach.
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Example: moving source model

—&— baseline: random baseline: static

s, o0 2
E i e N
H
<
*1 T T T T T T 9 T T T
10 20 30 40 50 10 20 30 40 50
t t

e ATE|Gbaseline) _ ::1 (’I‘(E;) _ T(gg_baseline)>)
® Average over 50 seeds.
Random = random designs.

Static = static BED version of our approach.

= Advantage over baselines grows with t.
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Summary

® Introduced a Bayesian experimental design framework for partially
observable dynamical systems.

® Derived recursive EIG and gradient estimators using nested particle filters for
online optimization and inference.
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Summary

® Introduced a Bayesian experimental design framework for partially
observable dynamical systems.

® Derived recursive EIG and gradient estimators using nested particle filters for
online optimization and inference.

e Pérez-Vieites, S., Igbal, S., Sarkka, S., & Baumann, D. Online Bayesian
experimental design for partially observable dynamical systems. Submitted.
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Vision: Adaptive and Robust BED

Vision: Extend BED beyond short, controlled experiments to realistic
deployments.
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Vision: Adaptive and Robust BED

Vision: Extend BED beyond short, controlled experiments to realistic
deployments.

Three complementary directions:
® Objective 1: Continual adaptation.
® Objective 2: Non-ergodic dynamics.

® Objective 3: Non-stationary dynamics.
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Objective 1: Continual adaptation

Most BED formulations assume:

® Finite horizon: small, fixed number of experiments (T « o).
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Objective 1: Continual adaptation

Most BED formulations assume:

® Finite horizon: small, fixed number of experiments (T « o).

Problem: In long runs, design policies degrade?; static BED infeasible due to
high dimension in the design space.

2Ivanova et al., (2024). Step-dad: Semi-amortized policy-based Bayesian experimental design. ICLR Workshop
on Data-centric Machine Learning Research (DMLR).
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Objective 1: Continual adaptation

Most BED formulations assume:

® Finite horizon: small, fixed number of experiments (T « o).

Problem: In long runs, design policies degrade?; static BED infeasible due to
high dimension in the design space.

® Changing environments: new conditions emerge that fixed policies cannot
adapt to.

2Ivanova et al., (2024). Step-dad: Semi-amortized policy-based Bayesian experimental design. ICLR Workshop
on Data-centric Machine Learning Research (DMLR).
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Objective 1: Continual adaptation

Most BED formulations assume:

® Finite horizon: small, fixed number of experiments (T « o).

Problem: In long runs, design policies degrade?; static BED infeasible due to
high dimension in the design space.

® Changing environments: new conditions emerge that fixed policies cannot
adapt to.

® Complex “big worlds”: even stationary systems can appear non-stationary
when high-dimensional or heavy-tailed.

2Ivanova et al., (2024). Step-dad: Semi-amortized policy-based Bayesian experimental design. ICLR Workshop
on Data-centric Machine Learning Research (DMLR).
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Objective 1: Continual adaptation

Goal: Given a design policy, 74, adapt policy parameters ¢ over time while
preserving critical knowledge.
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Objective 1: Continual adaptation

Goal: Given a design policy, 74, adapt policy parameters ¢ over time while
preserving critical knowledge.

Challenge: stability—plasticity dilemma3
too stable — no adaptation;  too adaptive — forgetting.

3Wemg et al., (2024). A comprehensive survey of continual learning: Theory, method and application. TPAMI.
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Objective 1: Continual adaptation

Goal: Given a design policy, m,, adapt policy parameters ¢ over time while
preserving critical knowledge.

Challenge: stability—plasticity dilemma3
too stable — no adaptation;  too adaptive — forgetting.

Idea: regularisation-based CL

* Elastic weight consolidation (EWC)*: weight regularisation using Fisher
information,

A
=S Fi(¢ie - ¢i,:—1)2
25
* Variational continual learning (VCL)®: variational inference penalty via

KL(qe(¢) || ge-1(8))

3Wang et al., (2024). A comprehensive survey of continual learning: Theory, method and application. TPAMI.
4Kirkpatrick et al., (2017). Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. of Sci.
5Nguyen et al., (2018). Variational continual learning. 1CLR.
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Objective 1: Continual adaptation

Goal: Given a design policy, m,, adapt policy parameters ¢ over time while
preserving critical knowledge.

Challenge: stability—plasticity dilemma3
too stable — no adaptation;  too adaptive — forgetting.

Idea: regularisation-based CL

* Elastic weight consolidation (EWC)*: weight regularisation using Fisher
information,

A
=S Fi(¢ie - ¢i,:—1)2
25
* Variational continual learning (VCL)®: variational inference penalty via

KL(qe(¢) || ge-1(8))

= Avoiding high memory cost of replay buffers.

3Wemg et al., (2024). A comprehensive survey of continual learning: Theory, method and application. TPAMI.
4Kirkpat’,rick et al., (2017). Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. of Sci.
5Nguyen et al., (2018). Variational continual learning. 1CLR.
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Objective 2: Non-ergodic dynamics

Most BED formulations assume:

® Ergodicity: time averages ~ ensemble averages.

1L 1l
lim — e = lim —
Tooo T t;y‘t Neoo N;y"
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Objective 2: Non-ergodic dynamics

Most BED formulations assume:

® Ergodicity: time averages ~ ensemble averages.

1L 1l
lim — e = lim —
Tooo T t;y‘t N—oo N;y"

Problem: When ergodicity breaks, incremental utilities misalign with total

information gain. Standard BED objectives become unreliable.

Summary
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Objective 2: Non-ergodic dynamics

Most BED formulations assume:
® Ergodicity: time averages ~ ensemble averages.
N

li = i li - Z
I f = I
Tooo T t:1y,t N—oo N ,-:ly"

Problem: When ergodicity breaks, incremental utilities misalign with total

information gain. Standard BED objectives become unreliable.

Summary

® Multimodal or heavy-tailed observations — trajectories get trapped in one

mode.
* Irreversible or “dead-end” states (e.g. stuck robots, terminated

experiments).
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Goal: Design utilities that remain reliable when ergodicity fails.
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Objective 2: Non-ergodic dynamics

Goal: Design utilities that remain reliable when ergodicity fails.

Idea: Learn transformations of incremental utilities that restore alignment
between expected and time-averaged values.®

® Detect and diagnose loss of ergodicity during operation.

® Learn transformations 7 (U;) that make incremental EIG ergodic again:

E[T (V)] Z T (U)

6Baumann et al. (2025). Reinforcement learning with non-ergodic reward increments. TMLR.

Summary
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Objective 3: Non-stationary dynamics

Most BED formulations assume:

® Stationary model: known and fixed likelihood p(y,|0,&,).
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Objective 3: Non-stationary dynamics

Most BED formulations assume:

® Stationary model: known and fixed likelihood p(y,|0,&,).

Problem: Static models become misspecified” as the environment evolves.

7Forster et al. (2025). Improving Robustness to Model Misspecification in Bayesian Experimental Design.
Symp. Advances in Approximate Bayesian Inference.
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Objective 3: Non-stationary dynamics

Most BED formulations assume:

® Stationary model: known and fixed likelihood p(y,|0,&,).

Problem: Static models become misspecified” as the environment evolves.

* Parameter drift: gradual changes in system behaviour (e.g. component
wear, patient response evolution).

* Regime switching: abrupt transitions between modes (e.g. equipment
faults, environment changes).

Example: Industrial prognostics — from slow degradation to sudden faults.

7Forster et al. (2025). Improving Robustness to Model Misspecification in Bayesian Experimental Design.
Symp. Advances in Approximate Bayesian Inference.
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Objective 3: Non-stationary dynamics

Goal: Enable BED under evolving dynamics, maintaining model validity and
design relevance
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Objective 3: Non-stationary dynamics

Goal: Enable BED under evolving dynamics, maintaining model validity and
design relevance

Approach: Incorporate ideas from Bayesian filtering and changepoint detection®.

* Gradual drift: latent parameters 0, evolve via transition p(6:¢|0:-1) (online
filtering).

® Regime switching: latent mode 1; with transition p(v¢|1:-1) enables
changepoint-aware designs.

8Duran—Martin (2025). Adaptive, robust and scalable Bayesian filtering for online learning. PhD Thesis, Queen
Mary University of London.
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Summary

Towards adaptive, robust, and realistic Bayesian experimental design (BED).

® Objective 1: Continual adaptation — adapt policies over long deployments
without retraining.

°® Objective 2: Non-ergodic dynamics — reliable/robust objectives under
non-ergodic dynamics.

® Objective 3: Non-stationary dynamics — maintain validity under evolving
environments.

Thank you!
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