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ABSTRACT

We introduce the adaptive Gaussian nested filter (AGNesF),
the first nested method that adapts the number of samples
to estimate both the static parameters and the dynamical
variables of a state-space model. The proposed method is
based on the nested Gaussian filter (NGF), that combines
two layers of inference, one inside the other, to compute the
joint posterior probability distribution of the static param-
eters and the state variables. We propose two novel rules
to reduce computational complexity without compromising
the performance. One enables the bottom layer techniques
to run recursively, while the other reduces automatically the
number of samples in the parameter space when they are re-
dundant. We describe a specific implementation of the new
scheme that uses a quadrature Kalman filter (QKF) in the
parameter layer, and we study its performance in a stochas-
tic Lorenz 63 model.

Index Terms— Bayesian inference, stochastic filtering,
Gaussian filter, parameter estimation, adaptive filter

1. INTRODUCTION

The estimation of the evolution of dynamical systems over
time is a crucial problem in many fields of science. Many
examples can be found in meteorology [1], ecology [2], epi-
demiology [3], quantitative finance [4] and engineering [5].
These systems are often characterized by state-space mod-
els (SSMs) that consist of a sequence of state vectors, xt,
a sequence of noisy observation vectors, yt, and a set of
static model parameters, θ, that describe the behavior of
the state. Classical filtering methods [6, 7, 8], including
both Gaussian-approximation techniques and Monte Carlo
schemes, address the estimation of the states xt while as-
suming the parameters θ to be known. However, this is
hardly ever the case in practice, and the parameters need to
be estimated as well.

In the last few years, there have been advances in the
development of well-principled probabilistic methods that
compute the posterior probability distribution of both the
parameters and the state variables. Among these methods,
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the sequential Monte Carlo square (SMC2) [9], the particle
Markov chain Monte Carlo (PMCMC) [10], and the nested
particle filter (NPF) [11] stand out, all of them based on par-
ticle filters [12, 13, 14]. The NPF is the only method that is
recursive. This scheme is characterized by two intertwined
layers of approximation methods, the top layer for the pa-
rameter estimation task and the bottom layer for the state
tracking. However, the use of Monte Carlo in both layers is
still computationally costly, due to the high number of sam-
ples or particles needed. In order to alleviate the computa-
tional cost, the nested hybrid filter (NHF) [15] and the NGF
[16] use lower-cost filtering techniques in each layer. In
particular, the NHF combines deterministic methods with
Monte Carlo-based techniques, while the NGF implements
deterministic techniques in both layers of inference.

A key feature of all the aforementioned methods is the
selection of the number of samples or points. In general,
a large number of samples entails a good performance
but also a higher computational cost. Several rules to
adapt/select the number of samples in Monte Carlo meth-
ods have been proposed. Some of them rely on a Kull-
back–Leibler divergence-based approximation error [17],
a heuristic approach based on the effective sample size
[18, 19], the variance of the particle estimators [20, 21], or
the performance of several candidate models [22]. Also,
the uniformity of a predictive statistic is used in [23, 24] to
change automatically the number of samples and achieve a
prescribed performance.

In this paper, we propose the adaptive Gaussian nested
filter (AGNesF), a new nested method that incorporates two
mechanisms to reduce the computational complexity. First,
we introduce a new rule to determine when the filters of the
bottom layer can run recursively. Therefore, the whole se-
quence of data is not reprocessed every time there is a new
observation. Second, we propose a novel rule to reduce au-
tomatically the number of points when t grows. In this way,
the parameter space is explored when processing the begin-
ning of the time series, and the computational complexity is
reduced when the performance is no longer compromised.
Within this framework, we describe the implementation of
the QKF in the top layer of the nested methodology and
show numerical results for a stochastic Lorenz 63 model.

We introduce the problem and the technical background
in Section 2. In Section 3, we describe the new methodol-
ogy. The numerical results are shown in Section 4 and we
draw the conclusions in Section 5.



2. BACKGROUND

2.1. State-space models (SSMs)

We are interested in Markov state-space dynamical systems
that can be described by the pair of equations

xt = f(xt−1,θ) + vt, (1)
yt = g(xt,θ) + rt, (2)

where t ∈ N denotes discrete time, xt ∈ Rdx is a dx-
dimensional state vector, yt ∈ Rdy is the dy-dimensional
noisy observation vector, and vt and rt are zero-mean ran-
dom vectors that represent the state and observation inde-
pendent noises. The evolution of the system depends on the
functions f : Rdx × Rdθ −→ Rdx and g : Rdx × Rdθ −→
Rdy , and an unknown parameter vector, θ ∈ Rdθ .

2.2. Bayesian inference in SSMs

The goal of nested methodologies is to approximate se-
quentially the joint posterior probability density function
(pdf) of the unknown parameters, θ, and the state at time t,
xt,

p(θ,xt|y1:t) = p(xt|y1:t,θ)p(θ|y1:t). (3)

Figure 1 shows a generic nested scheme. In the top layer
(the parameter layer), the posterior pdf of the parameters
p(θ|y1:t) is computed, while in the bottom layer (the state
layer), we calculate p(xt|y1:t,θ). We assume identifiable
SSMs, thus, there is a unique, true parameter θ that maxi-
mizes the posterior p(θ|y1:t). Different methods (e.g., de-
terministic or Monte Carlo filters) can be used in each layer
to approximate these pdfs, leading to a broad class of nested
methods (e.g., NPF [11], NHF [15], NGF [16]).
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Fig. 1: Recursive scheme of the nested filters, showing the
relevant pdfs and their relations.

The key difficulty of all nested methodologies is to se-
quentially approximate

p(θ|y1:t) =
p(yt|y1:t−1,θ)

p(yt|y1:t−1)
p(θ|y1:t−1), (4)

since the likelihood p(yt|y1:t−1,θ) cannot be evaluated ex-
actly. However, it can be rewritten as the integral

p(yt|y1:t−1,θ) =

∫
p(yt|xt,θ)p(xt|y1:t−1,θ)dxt, (5)

where p(yt|xt,θ) is given by the SSM, and p(xt|y1:t−1,θ)
is approximated by the bottom layer. Therefore, the likeli-
hood p(yt|y1:t−1,θ) can be evaluated in the bottom layer
of inference (see Fig. 1).

2.3. Nested Gaussian filters

NGFs [16] estimate the pdf p(θ|y1:t) for the approximation
of expectations of the form∫

f(θ)p(θ|y1:t)dθ =

∫
f(θ)

p(yt|y1:t−1,θ)

p(yt|y1:t−1)
p(θ|y1:t−1)dθ

≈
Nθ∑
n=1

f(θn
t )

p(yt|y1:t−1,θ
n
t )

p(yt|y1:t−1)
wn

t ,

(6)

for any function of the parameters, f(θ). Eq. (6) is
obtained by approximating p(θ|y1:t−1) with a set of
weighted points, {θn

t , w
n
t }

Nθ
n=1, e.g., using cubature rules

[25] or the unscented transform (UT) [7]. The constants
p(yt|y1:t−1,θ

n
t ), n = 1, . . . , Nθ, are approximated using

a bank of Nθ Gaussian filters placed in the bottom layer of
the nested scheme. Then, p(yt|y1:t−1) is approximated as

p(yt|y1:t−1) =

∫
p(yt|y1:t−1,θ)p(θ|y1:t−1)dθ (7)

≈
Nθ∑
n=1

p(yt|y1:t−1,θ
n
t )w

n
t . (8)

3. ADAPTIVE GAUSSIAN NESTED FILTER

We now introduce the adaptive Gaussian nested filter (AG-
NesF), a new algorithm of the family of nested methods
that adapts online the number of points of the parameter
layer. We implement a QKF [26] in the upper layer and,
since the number of points will be adaptive, we will de-
note Nθ,t instead of Nθ. The method is summarized in
Algorithm 1. First, we initialize Nθ,1 as well as the ini-
tial state for the bottom layer filters. We also set the first

mean and covariance matrix of the parameters, θ̂0 and Ĉ
θ

0 .
Then, at every time step, we generate a new set of weighted
points {θn

t , w
n
t }

Nθ,t

n=1 , and we run the Nθ,t bottom filters to
compute the pdfs p(yt|y1:t−1,θ

n
t ). For this task, we as-

sume that the function p(yt|y1:t−1,θ) is continuous on θ
(see [16] for more details), and thus, p(yt|y1:t−1,θ

n
t ) ≈

p(yt|y1:t−1,θ
n
t−1) when θn

t ≈ θn
t−1. In line 9 and based

on this assumption, we introduce a new recursive rule (de-
scribed in Section 3.1) to decide whether the bottom layer
filters compute p(yt|y1:t−1,θ

n
t ) recursively (line 9) or not

(line 11). After computing all the likelihoods in the bottom
layer, in line 14 we estimate both the means and covariance
matrices for the parameter and the state by applying Eq.
(6). Finally, we compute ρt in Eq. (10) to update Nθ,t+1,
as described in Section 3.2.



Algorithm 1 Adaptive Gaussian nested filter (AGNesF)

Input: p(x0), p(θ), α1 > 1, αmin = 2, and λ, ϵ > 0.
1: Set Nθ,1 = αdθ

1 .

2: Set θ̂0 = θ0 and Ĉ
θ

0 = Cθ
0 from p(θ).

3: Initialise state from p(x0) in each bottom layer filter.
4: for t ≥ 1 do
5: Generate {θn

t , w
n
t }

Nθ,t

n=1 as

θn
t =

√
Ĉ

θ

t−1ξ
n + θ̂t−1 and wn

t = υn,

where {ξn, υn}Nθ,t

n=1 is a set of quadrature points and
weights for the standard normal, and

√
C represents

the Cholesky factor of C.
6: for n = 1 to Nθ,t do
7: Calculate the index mn in (9).
8: if ∥θn

t − θmn

t−1∥p < λ∥θmn

t−1∥p then
9: Run filter to compute p(yt|y1:t−1,θ

n
t ) from

p(xt−1|y1:t−1,θ
n
t−1) ≈ p(xt−1|y1:t−1,θ

mn

t−1).

10: else
11: Run filter to compute p(yt|y1:t−1,θ

n
t ) from the

prior p(x0), processing the sequence y1:t.
12: end if
13: end for
14: Compute x̂t, Ĉ

x

t , θ̂t and Ĉ
θ

t from (6).
15: Calculate ρt from (10).
16: if ρt

Nθ,t
> 1− ϵ then

17: Nθ,t+1 = (αt+1)
dθ with αt+1 = max(αt −

1, αmin).
18: else
19: Nθ,t+1 = Nθ,t with αt+1 = αt.
20: end if
21: end for
22: return x̂t, Ĉ

x

t , θ̂t and Ĉ
θ

t

In the proposed method, we introduce two mecha-
nisms to reduce the computational complexity in the nested
methodology. First, we describe a new rule that enables
the bottom layer filters to run recursively. Otherwise, the
whole sequence y1:t has to be reprocessed every time there
is a new observation. Second, we propose a novel rule that,
based on a statistic, reduces the number of points in the pa-
rameter estimation layer (top layer in Fig. 1) when t grows.
The parameter space is properly explored at the beginning
of the experiments and the computational complexity is
reduced when the performance is no longer compromised.
In the next two sections, we provide more details about
these two efficient mechanisms.

3.1. Recursive rule

The recursive rule that is introduced in the NGF [16] is
based on the distance between the n-th parameter points of
consecutive time steps. However, as the number of points
changes with time in the AGNesF, the n-th point at time t
might not always exist and the rule cannot be used. Here,

we propose to check which point in {θj
t−1, w

j
t−1}

Nθ,t−1

j=1 is
the closest one to θn

t :

mn = argmin
j∈1,...,Nθ,t−1

(∥θn
t − θj

t−1∥p), (9)

for n = 1, . . . , Nθ,t. Next, the maximum component of the
vector ∥θn

t − θmn

t−1∥p is evaluated and compared against the
relative threshold λ∥θmn

t−1∥, for λ > 0. A smaller λ leads to
a more restrictive rule and the algorithm takes longer to be-
come strictly recursive, leading to lower estimation errors
but larger runtimes. Contrarily, a larger λ allows to approx-
imate p(yt|y1:t−1,θ

n
t ) ≈ p(yt|y1:t−1,θ

mn

t−1) more often in
the algorithm. Thus, the algorithm runs recursively, reduc-
ing the runtime but also the accuracy. However, the effect of
an specific value of λ will depend on the problem or model
of interest.

3.2. Adaptive rule

In order to decide when to reduce Nθ,t without compro-
mising the performance of the filter, we use the following
statistic

ρt =
1∑Nθ,t

n=1(s̄
n
t )

2
, (10)

with s̄nt =
p(yt|y1:t−1,θ

n
t )∑Nθ,t

n=1 p(yt|y1:t−1,θ
n
t )

. (11)

The statistic takes

• its minimum value in ρt = 1, which occurs when
only one likelihood evaluation p(yt|y1:t−1,θ

n
t ), for

n = 1, . . . , Nθ,t, is different from zero; and

• its maximum value in ρt = Nθ,t, when for all
n = 1, . . . , Nθ,t, the evaluations p(yt|y1:t−1,θ

n
t )

are equal.

The latter case (ρt = Nθ,t) happens when the posterior
pdf p(θ|y1:t) is narrow, since the QKF locates the points
closely in the parameter space. In this case, most of the
points are redundant when evaluated in p(yt|y1:t−1,θ) and
barely provide any information. Therefore, we introduce an
adaptive rule based on the statistic ρt to reduce Nθ,t in line
16 of Alg. 1, for ϵ > 0. Otherwise, the number of points re-
mains the same, i.e., αt = αt−1 and Nθ,t = Nθ,t−1. Thus,
smaller ϵ translates into a more conservative adaptation.

The statistic ρt share some properties with the effec-
tive sample size (ESS) [27, 28], a widely used measure
in sample-based simulation methods to assess the sample
quality, with existing variations also for quadrature-based
methods [29]. Although both statistic measures range from
1 to Nθ,t, their interpretation differs. While a high ESS
is related to a high-quality sample set, higher values of ρt
indicate redundancy in the point set.

3.3. Discussion

The introduction of the recursive and the adaptive rules sim-
plifies the configuration of the adaptive method, since we



avoid choosing Nθ,t at each time step by setting three pa-
rameters (λ, ϵ and αmin) at the begining of the simulation.
First, we need to set ϵ in the range 0 < ϵ ≪ 1. Smaller
values of ϵ turn the algorithm more conservative, i.e., it is
less likely to reduce Nθ,t, thus, keeping longer a large num-
ber of samples. This entails a better performance but at a
higher computational cost. Second, we set αmin = 2 to en-
sure Nθ,t > 1. Note that AGNesF runs a bank of Nθ,t filters
in the bottom layer of the scheme. We implement extended
Kalman filters (EKFs) in this layer for simplicity, although
any filtering technique (i.e., deterministic or Monte Carlo-
based) can be used.

4. NUMERICAL EXAMPLE

4.1. Stochastic Lorenz 63 model

Consider a stochastic version of the Lorenz 63 model [30,
31], with state xt = [x1,t, x2,t, x3,t]

⊤ ∈ R3 described by

x1,t = x1,t−1 −∆S(x1,t−1 − x2,t−1) +
√
∆σv1,t,

x2,t = x2,t−1 +∆[(R− x3,t−1)x1,t−1 − x2,t−1] +
√
∆σv2,t,

x3,t = x3,t−1 +∆(x1,t−1x2,t−1 −Bx3,t−1) +
√
∆σv3,t,

(12)

where θ = [S,R,B]⊤ ∈ R3 is the unknown static pa-
rameter vector, ∆ is the integration time-step (given in
continuous-time units), σ > 0 is a known scale parameter,
and {vi,t}3i=1 are independent Wiener processes.

We assume linear observations of the form

yt = ko

[
x1,t

x3,t

]
+ rt, (13)

where ko is a fixed parameter and rt ∼ N (rt|0, σ2
yI2) is

a 2-dimensional additive noise1. Moreover, a new observa-
tion is only available every Mo steps of the state Eq. (12).

4.2. Numerical results

We generate signals xt and yt, with t = {0, 1, . . .}, us-
ing Eqs. (12) and (13). The true parameters are S = 10,
R = 28, and B = 8

3 . We assume ko = 5, σ2 = 0.1,
and σ2

y = 1 are known. We use an integration step of
∆ = 2× 10−4 continuous-time units and we have Mo = 5
discrete-time steps between consecutive observations. The
length of each simulation run is T = 2 × 105 discrete-
time steps of the state Eq. (12). For the algorithms, we
set λ = 10−3. We assume a Gaussian prior distribution
p(θ) = N (θ|µθ, I3), where µθ is drawn at random from a
uniform distribution U(θ−,θ+), for θ− = [5, 10, 0]⊤ and
θ+ = [15, 40, 10]⊤. We also assume p(x0) = N (x̂0, I3),
where x̂0 = [−6,−5.5,−24.5]⊤.

In Fig. 2, we compare the performance of the AGNesF
with a NGF that uses a QKF in the parameter layer and a
bank of EKFs in the state layer (i.e., QKF-EKF as in [16]).
The QKF-EKF has a fixed number of points, α = {2, 3, 4},

1N (µ,C) denotes the Gaussian pdf with mean µ and covariance ma-
trix C, and Id denotes the d× d identity matrix.

while AGNesF initialize with α1 = 4 which is reduced
during the simulation run. We evaluate the proposed algo-
rithm for ϵ = 10−i, with i = {1, . . . , 5}. The performance
is assessed by the averaged normalized mean square error
(NMSE) of θ over time, NMSEθ, and the averaged running
time. Each point of the graph represents the average of 80
independent simulation runs.

The error of the QKF-EKF is considerably lower for
higher values of α (i.e., more points in the parameter space).
However, there is a noticeable increase in the running time,
going from 3.5 minutes for α = 2 to 24 minutes for α = 4.
Similarly, the AGNesF obtains better performance in terms
of error when the adaptive rule is more restrictive (i.e., for
small values of ϵ). Then, the conditions to reduce Nθ,t are
more difficult to meet and a large Nθ,t is kept for longer.
As expected, the lowest computational cost is obtained for
higher values of ϵ. In this case, αt (and consequently Nθ,t)
is reduced quickly and the accuracy decreases. In general,
the AGNesF significantly reduces the computational com-
plexity in comparison to the NGF (QKF-EKF) for a given
performance.
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θ
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Fig. 2: Averaged NMSEθ against averaged running time in
minutes for a QKF-EKF, and for the AGNesF with α1 = 4.

5. CONCLUSION

We have proposed the AGNesF algorithm, the first nested
method that adapts the number of samples to compute the
joint posterior probability distribution of the static parame-
ters and the dynamical variables. The method, that is based
on the two-layer NGF framework, implements two novel
mechanisms to reduce the computational complexity. First,
a new recursive rule enables the method to run recursively,
avoiding to reprocess the whole sequence of data every time
there is a new observation. Second, we introduce an adap-
tive rule to reduce automatically the number of samples in
the parameter space when t grows. For that purpose, we
describe a specific implementation that uses a QKF in the
parameter layer. We have presented numerical results for
a stochastic Lorenz 63 model, showing that the adaptive
rule attains a significant reduction in the computational cost
without accuracy loss.
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