
Kalman-based nested hybrid filters for recursive
inference in state-space models

Sara Pérez-Vieites
Department of Signal Theory and Communications

Universidad Carlos III de Madrid
Madrid, Spain

spvieites@tsc.uc3m.es

Joaquı́n Mı́guez
Department of Signal Theory and Communications

Universidad Carlos III de Madrid
Madrid, Spain

joaquin.miguez@uc3m.es

Abstract—We introduce a new sequential methodology to
calibrate the fixed parameters and trace the stochastic dynamical
variables of a state-space system. The proposed framework is
based on the nested hybrid filters (NHF) of [1], that combine
two layers of filters, one inside the other, to compute the joint
posterior probability distribution of the static parameters and the
state variables. In particular, we explore the use of deterministic
sampling techniques in the first layer of the algorithm, instead
of Monte Carlo methods, which reduces computational cost
and so makes the algorithms potentially better-suited for high-
dimensional state and parameter spaces. We present numerical
results for a stochastic Lorenz 63 model.

Index Terms—filtering, Kalman, Monte Carlo, Bayesian infer-
ence

I. INTRODUCTION

We address the problem of tracking the time evolution of
state-space dynamical systems, whose behaviour relies on a set
of unknown fixed parameters. Then, both time-varying states
and static parameters need to be estimated, and for this purpose
long observation sequences are collected.

Generally, jointly carrying out Bayesian model calibration
(parameter estimation) and filtering or data assimilation (state
tracking) poses several practical and theoretical difficulties.
Major breakthroughs have been attained in the last few years,
including methods such as sequential Monte Carlo square
(SMC2) [2] or particle Markov chain Monte Carlo (PMCMC)
[3]. They aim at computing the posterior probability distri-
bution of all the unknown variables and parameters of the
system. However, these are batch techniques, i.e., the whole
sequence of observations may have to be processed every
time a new observation arrives in order to obtain estimates.
Nested particle filters (NPFs) [4] apply the same principles
as SMC2, a scheme of two interwined layers of Monte Carlo
methods to estimate parameters and states, respectively, but
NPFs are purely recursive. This methodology is better suited
for long sequences of observations, although its computational
cost is still prohibitive in high-dimensional problems as it
uses Monte Carlo in both layers of filters. For these settings,
nested hybrid filters (NHF’s) [1] are more appealing, since they

This research was partially supported by Agencia Estatal de Investigación of
Spain (RTI2018-099655-B-I00 CLARA), the regional government of Madrid
(project no. Y2018/TCS-4705 PRACTICO) and the Office of Naval Research
(award no. N00014-19-1-2226).

introduce Gaussian filtering techniques in the second layer of
the algorithm, which reduces the computational cost.

In this paper, we introduce a further generalization of the
NHF methodology by describing how to apply non-Monte
Carlo methods in the first layer of the algorithm. Besides the
additional reduction in computational cost, the new scheme
allows the combination of virtually any type of Gaussian or
particle filter in any of the two layers of the nested structure.
To be specific, we show in detail how to obtain an NHF
that employs a deterministic-sampling Gaussian approximation
(such as the cubature Kalman filter (CKF) [5] or the unscented
Kalman filter (UKF) [6]) in the first (parameter) layer with an
extended Kalman filter (EKF) in the second (state) layer.

We state the problem to be addressed in Section II. In
Section III, we describe the new methodology and how it
can be made to work recursively. Some numerical results for
the stochastic Lorenz 63 model are shown in Section IV and
conclusions are drawn in Section V.

II. PROBLEM STATEMENT

A. State space models

We are interested in Markov state-space dynamic systems
that evolve in discrete-time and can be described as

X0 ∼ p(x0), (1)
Θ ∼ p(θ), (2)

Xt ∼ p(xt|xt−1,θ), (3)
Y t ∼ p(yt|xt,θ), (4)

where
• t ∈ N denotes discrete time;
• Xt is the dx-dimensional (random) state vector at time
t, taking values in the state space X ⊆ Rdx ;

• Θ is the dθ-dimensional vector of fixed parameters;
• p(θ) and p(x0) are the a priori pdfs of the parameters

and the state;
• p(xt|xt−1,θ) is the conditional density of the state Xt

given Xt−1 = xt−1 and the parameter vector Θ = θ;
• Y t is the dy-dimensional observation vector at time t,

taking values in the observation space Y ⊆ Rdy . We
assume Y t is conditionally independent of all other
observations given Xt and Θ;

• p(yt|xt,θ) is the conditional pdf of Y t given Xt = xt
and Θ = θ.

A broad class of systems can be described by the model in (1)–
(4), both linear and nonlinear, with Gaussian or non-Gaussian
perturbations. We assume that the prior distributions of the
state, p(x0), and the parameters, p(θ), are known, and we
aim at estimating both Θ and Xt recursively.

B. Model inference

The key difficulty of this problem is the Bayesian estimation
of the parameters in vector Θ, since their calibration is
necessary to track the state variables and, predict the evolution
of the system. From the viewpoint of Bayesian analysis, we
want to compute the posterior pdf p(θ|y1:t) as it contains all
the relevant information for the estimation task at discrete time
t. However, this pdf can be written as

p(θ|y1:t) =

∫
p(θ,xt|y1:t)dxt, (5)

leading naturally to approximations for p(θ,xt|y1:t) for each
t. This means that we not only estimate the parameter vector
Θ, but we also implicitly track the state dynamical vari-
ables. Then, the aim of this paper is to obtain a Gaussian
approximation of p(θ|y1:t) within a nested Gaussian filtering
scheme, whose second layer of filters will provide, in addition,
Gaussian approximations for p(xt|y1:t,θ).

III. NESTED GAUSSIAN FILTERS

In this section, we introduce a class of NHF’s with
Gaussian filters in both layers. We outline the methodology
used to obtain the Gaussian approximations of p(θ|y1:t) and
p(xt|y1:t,θ).

A. Sequential Gaussian approximation

Assuming p(θ|y1:t−1) is Gaussian, we aim at computing
expectations of the form

∫
f(θ)p(θ|y1:t)dθ for any function

of the parameters, f(θ). Using Bayes’ rule, we have

p(θ|y1:t) =
p(yt|y1:t−1,θ)

p(yt|y1:t−1)
× p(θ|y1:t−1), (6)

hence, we can rewrite the integral as∫
f(θ)p(θ|y1:t)dθ =

∫
ψ(θ)p(θ|y1:t−1)dθ, (7)

where ψ(θ) can be expressed as

ψ(θ) =
f(θ)p(yt|y1:t−1,θ)

p(yt|y1:t−1)
. (8)

As we assume that p(θ|y1:t−1) is Gaussian, we can describe
(7) using cubature rules [5] or the unscented transform (UT)
[6]. Then, p(θ|y1:t−1) can be represented at time t by a set
of reference points and weights, {θit, wit}, i = 1, . . . ,M , that
we can use to approximate the integral (7) as∫

ψ(θ)p(θ|y1:t−1)dθ '
M∑
i=1

ψ(θit)w
i
t. (9)

On the other hand, the pdf in the denominator of expression
(8), p(yt|y1:t−1), can be written as

p(yt|y1:t−1) =

∫
p(yt,θ|y1:t−1)dθ, (10)

where the joint pdf of Y t and Θ given all previous observa-
tions can be decomposed as

p(yt,θ|y1:t−1) = p(yt|θ,y1:t−1)p(θ|y1:t−1). (11)

Then, the integral in (10) can also be approximated using the
same reference points and weights as

p(yt|y1:t−1) '
M∑
i=1

p(yt|y1:t−1,θ
i
t)w

i
t. (12)

Finally, we can calculate the pdfs p(yt|y1:t−1,θ
i
t), i =

1, . . . ,M , using a bank of M Gaussian filters placed in the
second layer of the nested filter. Once they are computed, we
can approximate p(yt|y1:t−1) as in (12).

The argument above enables us to approximate any integral∫
f(θ)p(θ|y1:t)dθ. In particular, we can compute the mean

vector and covariance matrix of p(θ|y1:t) by taking f(θ) = θ
and f(θ) = (θ − θ̂t)(θ − θ̂t)>, respectively, where

θ̂t =

∫
θp(θ|y1:t)dθ. (13)

Specifically, we obtain the formulation for approximating the
mean parameter vector, θ̂t, and its covariance matrix, Ĉ

θ

t ,
sequentially as

θ̂t '
M∑
i=1

θit
p(yt|y1:t−1,θ

i
t)

p(yt|y1:t−1)
wit and (14)

Ĉ
θ

t '
M∑
i=1

(θit − θ̂t)(θ
i
t − θ̂t)>

p(yt|y1:t−1,θ
i
t)

p(yt|y1:t−1)
wit. (15)

We outline the procedure for the sequential computation of
(the Gaussian approximations of) p(θ|y1:t), t = 1, 2, . . ., in
Algorithm 1. The calculations done in the second layer of
filters are summarized in step 2a. Notice that, at any time
t = n ≥ 1, we update the reference points θit, i = 1, . . . ,M ,
and, therefore, we need to run the M Gaussian filters in the
second layer from scratch (i.e., from t = 0 to t = n) in order
to evaluate the densities p(yt|y1:t−1,θ

i
t). Thus, Algorithm 1

is sequential but not recursive and, as a consequence, not well
suited to handle long sequences of observations.

B. Recursive algorithm

For every new observation, the pdf’s p(yt|y1:t−1,θ
i
t) are

computed by running the nested filters from time 0 until the
current time t, which makes the computational cost increase
with t2.

However, the entries of the covariance matrix, Ĉ
θ

t , also tend
to decrease over time, which makes the difference between
consecutive reference points, θit − θ

i
t−1, decrease as well. If

we also assume that the function p(yt|y1:t−1,θ) is continuous
in θ, then we can make the computation recursive by assuming

Algorithm 1 Nested Gaussian filters.
Inputs:

- Prior pdfs p(x0) and p(θ).
Procedure:

1) Initialization
a) Generate M reference points, θi0, from p(θ) ∼
N (θ0,C

θ
0) for i = 1, . . . ,M , with weights wi0.

2) Sequential step, t ≥ 1.
a) For each i = 1, . . . ,M , use a Gaussian filter to

compute p(yt|y1:t−1,θ
i
t).

b) Compute θ̂t and Ĉ
θ

t from (14) and (15).
c) Generate new reference points θit+1, i = 1, . . . ,M ,

from θ̂t and Ĉ
θ

t , and weights wit+1.

Outputs: θ̂t and Ĉ
θ

t .

that p(yt|y1:t−1,θ
i
t) ' p(yt|y1:t−1,θ

i
t−1) when θit ' θ

i
t−1.

For the sake of clarity we summarize the steps for computing
p(yt|y1:t−1,θ

i
t) in Algorithm 2, relying on a bank of EKF’s.

Algorithm 3 outlines a recursive nested Gaussian filter with
a UKF/CKF in the first layer and EKF’s in the second layer. It
can be seen as a recursive and explicit implementation of Al-
gorithm 1. The initialization remains the same (step 1a), com-
puting M reference points θi0 and weights wi0, i = 1, . . . ,M ,
from the prior p(θ) ∼ N (θ0,C

θ
0). Also, we initialize the

state and its covariance matrix in every Gaussian filter of the
second layer (step 1b), setting x̂i0 = x̂0 and Ĉ

x,i

0 = Cx0 ,
i = 1, . . . ,M , from the prior p(x0) = N (x0|x̂0,C

x
0).

The sequential procedure starts by approximating
p(xt|y1:t−1,θ

i
t) with the second layer of Gaussian filters

(step 2(a)i). This is done differently depending on whether
we assume θit ' θ

i
t−1 or not. To be specific, we evaluate the

maximum component of the vector |θit − θ
i
t−1| and compare

it against a prescribed threshold λ > 0 in order to determine
whether the prediction and update steps in the second layer
of filters can be recursive or not. Specifically:

• If max1≤j≤dθ |θ
i
j,t − θ

i
j,t−1| < λ is not satisfied for θit,

the i-th filter runs from scratch following the scheme in
Algorithm 2.

• When max1≤j≤dθ |θ
i
j,t − θ

i
j,t−1| < λ is satisfied for θit,

only one prediction and update step (from time t− 1 to
time t) is needed. We approximate p(xt|y1:t−1,θ

i
t) from

p(xt−1|y1:t−1,θ
i
t) ≈ p(xt−1|y1:t−1,θ

i
t−1).

Then, we can use p(xt|y1:t−1,θ
i
t) in order to compute

p(yt|y1:t−1,θ
i
t) as in step 2b of Algorithm 2. Finally, we

can compute the mean vector θ̂t and the covariance matrix
Ĉ
θ,i

t at time t in step 2b, by using (14) and (15). We prepare
the new reference points θit+1 and their weights wit+1 from

N (θ̂t, Ĉ
θ,i

t) for next time step.
We can take advantage of filters in the second layer in order

to provide state estimates as well. Let us write the expectation

Algorithm 2 Extended Kalman filter conditional on θit, used
in the second layer of the nested filter.
Inputs:

- Prior pdfs p(x0).
- Known parameter vector θit.
- State-space model

xt = f(xt−1,θ) + vt, vt ∼ N (0,V), (16)
yt = g(xt,θ) + rt, rt ∼ N (0,R). (17)

Procedure:
1) Initialization

a) Assume p(x0) = N (x̂0, Ĉ
x

0).
2) Sequential step, t ≥ 1.

a) Prediction step. Compute

x̃t,θit = f(x̂t−1,θit
,θit), (18)

C̃
x

t,θit
= Jf,x̂

t−1,θit

Ĉ
x

t−1,θit
J>f,x̂

t−1,θit

+ V , (19)

where Jf,x is the Jacobian matrix of f(·) evaluated
at x̂t−1,θit

.
b) Use the unscented transform or a Gaussian cuba-

ture rule to compute

p(yt|y1:t−1,θ
i
t)

=

∫
p(yt|xt,θ

i
t)p(xt|y1:t−1,θ

i
t)dxt

'
∫
p(yt|xt,θ

i
t)N (xt|x̃t,θit , C̃

x

t,θit
)dxt.

c) Update step. Compute

x̂t,θit =x̃t,θit +Kt(yt − g(x̃t,θit ,θ
i
t)), (20)

Ĉ
x

t,θit
=(Idx −KtJg)C̃

x

t,θit
, (21)

Kt =C̃
x

t,θit
J>g,x̃

t,θit

(Jg,x̃
t,θit

C̃
x

t,θit
J>g,x̃

t,θit

+R),

where Jg,x is the Jacobian matrix of g(·) eval-
uated at x̃t,θit . Approximate p(xt|y1:t,θ) =

N (xt|x̂t,θit , Ĉ
x

t,θit
).

Outputs: x̂t,θit , Ĉ
x

t,θit
and p(yt|y1:t−1,θ

i
t).

of Xt as

E[Xt|y1:t] =

∫
Θ

[∫
X
xtp(xt|θ,y1:t)dxt

]
p(θ|y1:t)dθ,

(22)
where the integral in square brackets can be approximated by
the M Gaussian filters of the second layer. In this case, we
assume they are the EKF’s of Algorithm 2 conditional on Θ =
θit. This yields a Gaussian approximation of p(xt|θit,y1:t) '
N (xt|x̂t,θit , Ĉt,θit

), where

x̂t,θit ' E[Xt|θit,y1:t] and (23)

Ĉ
x

t,θit
' E[(Xt − x̂t,θit)(Xt − x̂t,θit)

>|y1:t,θ
i
t]. (24)

Then, a Gaussian approximation p(xt|y1:t) ≈ N (xt|x̂t, Ĉ
x

t)
can be constructed, where

x̂t '
M∑
i=1

x̂t,θit
p(yt|y1:t−1,θ

i
t)

p(yt|y1:t−1)
wit and (25)

Ĉ
x

t '
M∑
i=1

(x̂t,θit − x̂t)(x̂t,θit − x̂t)
> p(yt|y1:t−1,θ

i
t)

p(yt|y1:t−1)
wit.

(26)

Algorithm 3 Recursive nested Gaussian filters.
Inputs:

- Prior pdfs p(x0) and p(θ).
- A fixed threshold λ > 0.

Procedure:
1) Initialization

a) Generate M reference points, θi0, for p(θ) =
N (θ0,C

θ
0), i = 1, . . . ,M , with weights wi0.

b) If p(x0) = N (x0|x̂0,C
x
0), then set x̂i0 = x̂0 and

Ĉ
x,i

0 = Cx0 for i = 1, . . . ,M .
2) Sequential step, t ≥ 1.

a) For i = 1, . . . ,M :
i) If max1≤j≤dθ |θ

i
j,t − θij,t−1| < λ,

then approximate p(xt|y1:t−1,θ
i
t) from

p(xt−1|y1:t−1,θ
i
t) ≈ p(xt−1|y1:t−1,θ

i
t−1),

where p(xt−1|y1:t−1,θ
i
t−1) =

N (xt−1|x̂t−1,θit−1
, Ĉ

x

t−1,θit−1
).

Else, approximate p(xt|y1:t−1,θ
i
t) from the

prior p(x0).
ii) Use this approximation to compute

p(yt|y1:t−1,θ
i
t).

b) Compute θ̂t, Ĉ
θ

t , x̂t and Ĉ
x

t from (14), (15), (25)
and (26), respectively.

c) Generate reference points θit+1 from θ̂t and Ĉ
θ

t

for i = 1, . . . ,M .

Outputs: x̂t, θ̂t, Ĉ
x

t and Ĉ
θ

t .

IV. EXAMPLE

A. Stochastic Lorenz 63 model

Consider the 3-dimensional stochastic process x(τ) =
[x1(τ), x2(τ), x3(τ)]>, for τ ∈ (0,∞), taking values on R3,
whose dynamics are described by the system of stochastic
differential equations (SDEs)

dx1 = −S(x1 − x2) + σdv1, (27)
dx2 = Rx1 − x2 − x1x3 + σdv2, (28)
dx3 = x1x2 −Bx3 + σdv3, (29)

where the vi’s are independent 1-dimensional Wiener pro-
cesses, σ > 0 is a known scale parameter and (S,R,B) ∈ R
are unknown static model parameters. Using Euler-Maruyama

in order to integrate the SDEs (27)–(29), it is straightforward
to write the state-space model as

xt+1 = f∆(xt,θ) +
√

∆vt, t = 1, 2, . . . (30)

where f∆ : Rdx × Rdθ → Rdx can be expressed as

f1,∆(xt,θ) = x1,t −∆S(x1,t − x2,t),

f2,∆(xt,θ) = x2,t + ∆[(R− x3,t)x1,t − x2,t],

f3,∆(xt,θ) = x3,t + ∆(x1,tx2,t −Bx3,t),

where ∆ is the integration step, θ = (S,R,B)> and vt is
a sequence of 3-dimensional Gaussian independent random
vectors with zero mean and covariance matrix σ2

xI3. Hence,
p(xt|xt−1,θ) = N (xt|f∆(xt−1,θ), σ2∆Idx).

We assume the observation equation

yt = [x1,t, x3,t]
> + rt, (31)

where rt is a 2-dimensional Gaussian random variable with
covariance matrix σ2

yI2.

B. Numerical results

For our computer experiments we have used the stochastic
Lorenz 63 model outlined in (30) and (31) in order to generate
signals xt and yt, t = {0, 1, . . .}, used as the ground truth for
the assessment of the algorithm. We integrate the model using
Euler-Maruyama with step ∆ = 2 × 10−4 continuous-time
units. We assume the fixed parameters are S = 10, R = 28
and B = 8

3 (which yield underlying chaotic dynamics); and
the initial state is x̂0 = [−6,−5.5,−24.5]>. The noise scaling
factors, σ2 = 0.1 and σ2

y = 1, are known.
For the estimation task we use Algorithm 3. The initial-

ization of the state for each simulation is generated with
p(x0) = N (x0|x̂0, I3). In the same way, θ0 is initialized
by N (µθ, Idθ), where µθ = U(θ? − ε,θ? + ε), being θ? the
true parameters and ε = [3, 1, 0.5]>. The algorithm does not
collect an observation at every time step, but every 5 discrete-
time steps (10−3 continuous-time units). Hence, the prediction
step of the state variables at the second layer of nested filter
corresponds to 5 discrete-time steps of the Euler scheme until
a new observation arrives. Then, both the state and parameter
distributions are updated. We assume a threshold λ = 5×10−3.
Every simulation runs until t = T = 105.

Figure 1 shows the parameter estimates obtained by running
40 independent simulations. The three dimensions of θ̂t are
displayed over time (1a–1c) in order to illustrate how they
converge as observations are collected. Although the length of
the simulations is T = 105 continuous-time units, we have
plotted just the sections of time where the estimates converge.
The interval varies from one plot to another because the time of
convergence is not the same for all parameters (having shorter
times for B and longer times for S). In spite of that, this
figure shows how all parameters converge to the true values
for different initializations.

We have also assessed the accuracy of algorithm in terms
of the mean square error (MSE) of the predictor of the state.

(a) Estimates θ̂1,t = Ŝt. (b) Estimates θ̂2,t = R̂t. (c) Estimates θ̂3,t = B̂t.

Fig. 1: Sequences of posterior-mean estimates, θ̂t, over time obtained from 40 independent simulation runs.

We show the empirical MSE per dimension resulting directly
from the simulations,

MSEt =
1

dx
‖xt − x̂t‖2. (32)

Figure 2a, on the other hand, illustrates the accuracy of state
estimates, x̂t, by averaging the MSEt (32) of the previous
set of 40 simulation runs. The error decreases with time as
parameter estimates get closer to their true values, achieving
its minimum around t = 2.5 × 104. By that time, all
parameter estimates in Figure 1 have already converged and,
consequently, the state estimates as well.

In Figures 2b, 2c and 2d, the probability densities of each
dimension of θ̂t at time t = T are plotted for a typical
simulation run. They not only show the point estimates of the
parameters, but they also display information related to their
uncertainty. The mean of these Gaussian pdfs is close to the
true parameters, in agreement with results seen in Figure 1.
In addition, the variances are small, being all the probability
distributions tightly packed around the ground truth.

V. CONCLUSIONS

We have introduced a generalization of the NHF methodol-
ogy of [1] that, using long sequences of observations collected
over time, calibrates the static parameters and estimates the
stochastic dynamical variables of a state space model. This
scheme combines two layers of filters, one inside the other,
in order to compute the joint posterior probability distribution
of the parameters and the states. In this generalization of the
methodology, we introduce the use of deterministic sampling
techniques in the first layer of the algorithm (the cubature
Kalman filter (CKF) or the unscented Kalman filter (UKF)),
instead of Monte Carlo methods, describing in detail how the
algorithms can work sequentially and recursively. The use of
Gaussian filters in the two layers of the algorithm enables a
significant reduction in computational complexity compared
to Monte Carlo-based implementations. We have presented
numerical results for a stochastic Lorenz 63 model, using an
scheme with an UKF for the parameters in the first layer, and
EKF’s for the time-varying state variables in the second layer.

0 5 10

t 10
4

10
-3

10
-2

10
-1

10
0

M
S

E

(a) Mean MSEt.

9.9 10 10.1

S

0

5

10

15

20

p
o

s
te

ri
o

r
d

e
n

s
it
y

(b) Posterior density of θ̂T (1).

27.95 28 28.05

R

0

20

40

p
o

s
te

ri
o

r
d

e
n

s
it
y

(c) Posterior density of θ̂T (2).

2.66 2.665 2.67 2.675

B

0

50

100

p
o

s
te

ri
o

r
d

e
n

s
it
y

(d) Posterior density of θ̂T (3).

Fig. 2: The mean MSE of 20 simulation runs over time is
plotted in 2a. Figures 2b, 2c and 2d show the posterior density
of parameters (dashed lines) at time t = T and their true values
(black vertical lines).

REFERENCES

[1] Pérez-Vieites, Sara, Ins P. Mariño, and Joaquı́n Mı́guez. “Probabilistic
scheme for joint parameter estimation and state prediction in complex
dynamical systems.” Physical Review E 98.6 (2018): 063305.

[2] Chopin, Nicolas, Pierre E. Jacob, and Omiros Papaspiliopoulos. “SMC2:
an efficient algorithm for sequential analysis of state space models.”
Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy) 75.3 (2013): 397-426.

[3] Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. “Particle
Markov chain Monte Carlo methods.” Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 72.3 (2010): 269-342.

[4] Crisan, Dan, and Joaquı́n Mı́guez. “Nested particle filters for on-
line parameter estimation in discrete-time state-space Markov models.”
Bernoulli 24.4A (2018): 3039-3086.

[5] Arasaratnam, Ienkaran, and Simon Haykin. “Cubature Kalman filters.”
IEEE Transactions on Automatic Control 54.6 (2009): 1254-1269.

[6] Julier, Simon, Jeffrey Uhlmann, and Hugh F. Durrant-Whyte. “A new
method for the nonlinear transformation of means and covariances in
filters and estimators.” IEEE Transactions on Automatic Control 45.3
(2000): 477-482.

