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Sara Pérez-Vieites
Department of Signal Theory and Communications

Universidad Carlos III de Madrid
Madrid, Spain

spvieites@tsc.uc3m.es

Joaquı́n Mı́guez
Department of Signal Theory and Communications

Universidad Carlos III de Madrid
Madrid, Spain

joaquin.miguez@uc3m.es

Abstract—Multi-scale problems, where variables of interest
evolve in different time-scales and live in different state-spaces,
can be found in many fields of science. Here, we introduce a
new recursive methodology for Bayesian inference that aims
at estimating the static parameters and tracking the dynamic
variables of these kind of systems. Although the proposed
approach works in rather general multi-scale systems, for clarity
we analyze the case of a homogeneous multi-scale model with
3 time-scales (static parameters, slow dynamic state variables
and fast dynamic state variables). The proposed scheme, based
on nested filtering methology of [1], combines three intertwined
layers of filtering techniques that approximate recursively the
joint posterior probability distribution of the parameters and
both sets of dynamic state variables given a sequence of partial
and noisy observations. We explore the use of sequential Monte
Carlo schemes in the first and second layers while we use an
unscented Kalman filter to obtain a Gaussian approximation of
the posterior probability distribution of the fast variables in the
third layer. Some numerical results are presented for a stochastic
two-scale Lorenz 96 model with unknown parameters.

I. INTRODUCTION

Multi-scale problems can be found in many fields of science,
such as biology, chemistry, fluid dynamics and material sci-
ence, and so their mathematical modeling and the computation
of quantitative solutions are of broad interest [2]. However, the
modeling of such systems is complex, since they are governed
by processes at different time-scales that may be described
by diverse laws. Moreover, the cross dependencies among
these processes must also be modeled. Therefore, the problem
of tracking the time evolution of a multi-scale dynamical
system involves the prediction and estimation of several sets
of variables that live in different state-spaces and evolve in
different time scales. Moreover, the tracking of the variables
of interest usually has to be performed from the observation of
partial and noisy observations. Efficient recursive algorithms
for this task are badly needed.

The simplest case of a multi-scale problem consists of a
system with unknown static parameters and dynamic state
variables, since the parameters may be considered as state
variables that evolve at a greater time scale. Hence, it is a
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multi-scale problem with only two time scales. In general,
carrying out both parameter estimation and state tracking at
once implies several practical and theoretical difficulties. A
few well-principled methods have been proposed in the last
few years, though. Sequential Monte Carlo square (SMC2)
[3] or particle Markov chain Monte Carlo (PMCMC) [4]
are examples of schemes that yield theoretically-guaranteed
solutions to this problem. They aim at computing the joint
posterior probability distribution of all the unknown variables
and parameters of the system. Unfortunately, both SMC2 and
PMCMC are batch techniques. In other words, every time a
new observation arrives, the whole sequence of observations
has to be processed from scratch in order to update the
estimates. Nested particle filters (NPFs) [5] apply the same
principles as SMC2 but in a recursive way. It is a scheme
with two interwined layers of Monte Carlo methods, one inside
the other, that estimate parameters and states, using the first
layer for estimating the parameters and the second layer for
tracking state variables. This methodology is better suited for
long sequences of observations, however, the use of Monte
Carlo in both layers of filters still makes its computational cost
prohibitive in high-dimensional problems. Nested hybrid filters
(NHFs) [1] introduce Gaussian filtering techniques in the
second layer of the algorithm, reducing the computational cost
considerably and making the methodology more appealing for
these settings.

In this paper, we propose a generalization of the NHF
methodology to tackle the problem of recursive Bayesian
inference for a class of homogeneous multi-scale state-space
models. We analyse the case of a dynamical system with three
time scales (static parameters, slow dynamic state variables
and fast dynamic state variables), but the methodology works
in the same way for more general examples (namely, systems
with n scales).

The new scheme is a three-layer nested filter that approxi-
mates, in a recursive manner, the posterior probability distri-
butions of the parameters and the two sets of state variables
given the sequence of available observations. In the first layer,
we approximate the posterior probability distribution of the
parameters by using sequential Monte Carlo (SMC) algorithm.
This scheme is intertwined with a second layer of SMC tech-
niques that approximate the posterior probability distribution



of the slow state variables. Finally, in a third layer of filtering,
we use an unscented Kalman filter (UKF) [6] in order to
obtain a Gaussian approximation of the posterior probability
distribution of the fast state variables. The computations on
the second layer are conditional on the candidate parameter
values generated on the first layer, while the calculations on
the third layer are conditional on the candidates drawn at the
first and second layers.

The rest of the paper is organised as follows. We state the
problem to be addressed in Section II. In Section III, we
describe the new methodology for multi-scale systems with
static parameters and two sets of dynamic state variables.
Numerical results for the stochastic two-scale Lorenz 96 model
are shown in Section IV and conclusions are drawn in Section
V.

II. PROBLEM STATEMENT

A. State space models

We are interested in systems that can be described by
multidimensional stochastic differential equations (SDEs). In
particular, we consider a general class of models that can be
described by the pair of stochastic differential vector equations

dx = fx(x,θ)dt+ gx(z,θ)dt+ σxdv, (1)
dz = fz(x,θ)dt+ gz(z,θ)dt+ σzdw, (2)

where t denotes continuous time, x(t) ∈ Rdx and z(t) ∈ Rdz
are the slow and fast states of the system, respectively,
fx : Rdx × Rdθ → Rdx , gx : Rdz × Rdθ → Rdx , fz : Rdx ×
Rdθ → Rdz and gz : Rdz × Rdθ → Rdz are possibly non-
linear functions parameterized by a fixed vector of unknown
parameters, θ ∈ Rdθ , σx, σz > 0 are known scale parameters
that control the intensity of the stochastic perturbations, and
v(t) and w(t) are vectors of independent standard Wiener
processes with dimension dx and dz , respectively.

Equations (1)–(2) do not have closed form solutions for
general nonlinear functions fx and fz and they have to be
discretized for their numerical integration. In order to handle
the slow and fast time scales, we apply a macro-micro solver
[7], [8] that runs an Euler-Maruyama scheme at each layer,
albeit with different integration steps. To be specific, we use
∆z as the integration step of z while ∆x � ∆z is the
integration step of x. Then, we can simulate x and z using
the pair of difference equations

xn = xn−1 + ∆x(fx(xn−1,θ) + gx(z̄n,θ))

+
√

∆xσxvn, (3)
zk = zk−1 + ∆z(fz(xb k−1

h c
,θ) + gz(zk−1,θ))

+
√

∆zσzwk, (4)

where xn ' x(n∆x) and zk ' z(k∆z), n ∈ N denotes
discrete time in the time scale of the slow variables, k ∈ N
denotes discrete time in the fast variables time scale, h =
∆x

∆z
∈ Z+ is the ratio between the two time scales, vn

and wk are Gaussian random variables of zero mean and

covariance matrices Idx and Idz respectively, and z̄n is an
average computed as

z̄n =
1

h

hn∑
i=h(n−1)+1

zi. (5)

We assume that we observe both state variables xn and
zk, but only in the (slow) time scale of x. Then, the n-th
observation is a random variable, yn ∈ Rdy , of dimension dy ,
which we model as

yn = l(zhn,xn,θ) + rn, (6)

where l : Rdz × Rdx × Rdθ → Rdy is a transformation that
maps the states into the observation space, and rn is a 0-mean
observational-noise vector with covariance matrix R.

B. Model inference

The key difficulty of this problem is the joint Bayesian
estimation of the parameters, θ, and all states, x and z, since
they all depend on each other. This means that the estimation
of the fixed parameters is necessary to track both sets of
state variables and, at the same time, tracking the slow state
variables is needed for predicting the time evolution of the fast
states and vice versa. From the viewpoint of Bayesian analysis,
we aim at approximating the joint posterior probability density
function (pdf) p(θ,x0:n, zhn|y1:n). Using the chain rule, we
can factorize this pdf as

p(zhn,xn,θ|y1:n) =p(zhn|x0:n,y1:n,θ)

× p(x0:n|y1:n,θ)p(θ|y1:n), (7)

where we identify the three key distributions that we need
to approximate. Each one of these pdf’s can be handled in a
different layer of computation. Hence, we aim at designing a
nested filter (in the vein of [1] and [5]) with three layers. In the
first one we compute an approximation of p(θ|y1:n). In the
second one, we approximate p(x0:n|y1:n,θ), and in the third
one we tackle p(zhn|x0:n,y1:n,θ). The general methodology
is described in Section III-A and one possible implementation
is obtained in Section III-B.

III. MULTI-SCALE NESTED FILTER

In this section, we introduce a class of NHFs with three
layers of computation. We outline the methodology used to
obtain the Gaussian approximation of p(zhn|x0:n,y1:n,θ)
and the Monte Carlo approximations of the distributions with
pdf’s p(x0:n|y1:n,θ) and p(θ|y1:n). Let us remark that, given
a point-mass Monte Carlo estimate of the distribution with
pdf p(x0:n|y1:n,θ), it is straightforward to integrate out the
sequence x0:n−1 to obtain an estimate of the distribution with
pdf p(xn|y1:n,θ). This is standard procedure, e.g., in particle
filtering [9].



A. Nested conditional filtering in multiple layers

In order to compute p(θ|y1:n) in the first layer of the filter,
we can recursively factorize this pdf as

p(θ|y1:n) ∝ p(yn|θ,y1:n−1)p(θ|y1:n−1), (8)

using Bayes’ theorem, where p(yn|θ,y1:n−1) is the likelihood
of θ and p(θ|y1:n−1) is the posterior pdf at the previous
time step. Then, the first layer is devoted to the calculation of
p(θ|y1:n) and the key difficulty for the update of the latter pdf
is the computation of the likelihood p(yn|θ,y1:n−1), which
has to be evaluated in a second layer of computation.

In order to identify the tasks to be performed in this second
layer, we rewrite the likelihood as the integral

p(yn|θ,y1:n) =

∫
p(yn|x0:n,y1:n−1,θ)

× p(x0:n|y1:n−1,θ)dx0:n, (9)

where p(x0:n|y1:n−1,θ) is the joint one-step-ahead predictive
pdf of the slow state variables, x0:n, and p(yn|x0:n,y1:n−1,θ)
is the likelihood of θ and x0:n. In order to evaluate this
integral, we need to track the sequence of posterior pdf’s
p(x0:n|y1:n−1,θ), which is precisely the task of the second
layer of computation.

The likelihood p(yn|x0:n,y1:n−1,θ) in (9) is evaluated in
the third layer. Again, we write it as an integral, namely,

p(yn|x0:n,y1:n−1,θ) =

=

∫
p(yn|zhn,x0:n,y1:n−1,θ)

× p(zhn|x0:n,y1:n−1,θ)dzhn

=

∫
p(yn|zhn,xn,θ)p(zhn|x0:n,y1:n−1,θ)dzhn,

(10)

where p(zhn|x0:n,y1:n−1,θ) is the one-step-ahead predictive
pdf of the fast state variables (conditional on the slow ones and
the parameters) and p(yn|zhn,xn,y1:n−1,θ) is the likelihood
of θ and both state variables, xn and zhn. We point out the
simplification of the likelihood in (10), which follows from the
assumption of conditional independence of the observations
(given the full states of the system) in the model of Section
II. In order to compute the integral in (10), we need to track
the posterior pdf p(zhn|x0:n,y1:n−1,θ) in the third layer of
computation.

To summarize:
• The third layer tracks the fast variables, by computing the

pdf p(zhn|x0:n,y1:n−1,θ), and evaluates the likelihood
p(yn|x0:n,y1:n−1,θ).

• The second layer takes the likelihood
p(yn|x0:n,y1:n−1,θ) and uses it to track the posterior
pdf of the slow states, p(x0:n|y1:n−1,θ). It uses this
posterior to evaluate the likelihood p(yn|y1:n−1,θ).

• The first layer takes p(yn|y1:n−1,θ) and uses this like-
lihood to track the posterior pdf of the parameters,
p(θ|y1:n).

B. Hybrid numerical scheme
A particular implementation of the multi-scale nested filter

is summarized in Algorithms 1–3. Specifically, we describe the
use of SMC algorithms for the computations in the first and
second layers of the filter in order to approximate p(θ|y1:n−1)
and p(x0:n|y1:n−1,θ) respectively. In the third layer of com-
putation we run a UKF [6] to obtain a Gaussian approximation
of the form p(zhn|x0:n,y1:n−1,θ) ≈ N (zhn|ẑhn,Cn(z)),
where N (x|µ,C) denotes a Gaussian pdf with mean µ and
covariance matrix C. In the remaining of this section we
outline the key steps of the three layers in the algorithm.

Algorithm 1 describes the first layer of the filter, which aims
at the approximation of the posterior distribution of the param-
eters. It receives as inputs the prior distributions of the parame-
ters, p(θ), and both state variables, p(x0) and p(z0). In the ini-
tialization step, they are used to generate the starting particles
(for the SMC schemes) and sigma-points (for the UKF) needed
at each layer. Specifically, we generate N parameter samples
{θi0}1≤i≤N , J slow state particles per each parameter sample,
{xi,j0 }1≤j≤J , and L + 1 (L = 2dz) sigma-points of the fast
state per each slow state sample, {zi,j,l0 }0≤l≤L, to obtain a set
of the form {θi0, {x

i,j
0 , {zi,j,l0 }0≤l≤L}1≤j≤J}1≤i≤N . More-

over, a Markov kernel κθ
′

N (dθ) is needed for the jittering of
parameter samples [5], i.e., to draw new particles, {θ̄in}1≤i≤N ,
at each discrete-time step. Then, we compute the approximate
likelihood p̂J,L(yn|y1:n−1, θ̄

i
n) in order to obtain the weights

{ṽin}1≤i≤N . The states {xi,jn−1, {z
i,j,l
h(n−1)}0≤l≤L}1≤j≤J are

propagated to time n in the nested layers of filtering in step
2b. Finally, we normalize the weights in order to resample not
only the parameter particles θ̄in, but also their associated sets
of state variables.

Algorithm 2 describes the implementation of an SMC
scheme in the second layer of the multi-scale nested fil-
ter, which works for a given sample θ̄in. In this layer we
approximate the posterior pdf p(x0:n|y1:n, θ̄

i
n). The proce-

dure is similar to the one in Algorithm 1, starting with the
computation of the particle x̄i,jn , the approximate likelihood
p̂L(yn|x̄i,jn ,x

i,j
0:n−1,y1:n−1, θ̄

i
n) and the weights {ũi,jn }1≤j≤J

in step 1a. In the third layer, the fast state variables are
propagated and we obtain new samples {zi,j,lhn }0≤l≤L. Then,
we can resample the set {xi,j0:n, {z

i,j,l
hn }0≤l≤L}1≤j≤J with the

normalized weights obtained in step 1c.
Algorithm 3 describes the UKF used in the third layer of

the filter. In step 1, the algorithm generates new fast sigma-
points z̃i,j,lq , for q = h(n − 1) + 1, . . . , hn and l = 0, . . . , L,
conditional on the parameters θ̄in and slow variables xi,jn−1.
Here, at each time step q, we compute the predictive mean
and covariance matrix as

ži,jq =

L∑
l=0

wi,j,lz̃i,j,lq and (17)

Č
i,j

q (z) =

L∑
l=0

wi,j,l(z̃i,j,lq − ži,jq )(z̃i,j,lq − ži,jq )> +W ,

(18)



Algorithm 1 SMC approximation of p(θ|y1:n).
Inputs

- Prior distributions p(θ), p(x0) and p(z0).
- A Markov kernel κθ

′

N (dθ) which, given θ′, generates
jittered parameters θ ∈ Rdθ .

Initialization: this is a joint initialization for all three layers.
- Draw N i.i.d. sample θi0, i = 1, . . . , N from the prior

distribution p(θ).
- Draw J i.i.d. samples xi,j0 , i = 1, . . . , N , j = 1, . . . , J ,

from the prior distribution p(x0).
- Draw L + 1 sigma-points, zi,j,l0 , with their respective

weights, wi,j,l, i = 1, . . . , N , j = 1, . . . , J , l = 0, . . . , L,
from the prior distribution p(z0|ẑ0,C0(z)) as

zi,j,00 = ẑ0, wi,j,0 =
1

1 + dz
,

zi,j,l0 = ẑ0 + Sl, wi,j,l =
1− wi,j,0

2dz
,

zi,j,l+dz0 = ẑ0 − Sl, wi,j,l+dz =
1− wi,j,0

2dz
,

for l = 1, . . . , dz , being Sl the l-th row or column of the
matrix square root of dz

1−wi,j,0C0(z).
Procedure For n ≥ 0:

1) Draw N i.i.d samples θ̄in from κ
θin−1

N (dθ).
2) For i = 1, . . . , N :

a) Compute

ṽin = p̂J,L(yn|y1:n−1, θ̄
i
n), (11)

where the approximate likelihood is evaluated at
layer 2.

b) Obtain new particles {xi,jn , {z
i,j,l
hn }0≤l≤L}1≤j≤J at

time n (from layers 2 and 3).
c) Normalize the weights

vin =
ṽin∑N
i=1 ṽ

i
n

. (12)

3) Resample: set for each m = 1, . . . , N

{θmn ,{x(m,j)
n , {zm,j,lhn }0≤l≤L}1≤j≤J}

= {θ̄in, {x(i,j)
n , {zi,j,lhn }0≤l≤L}1≤j≤J} (13)

with probability vin.
Outputs: {θin, {x

(i,j)
n , {ẑi,jhn,C

i,j
n (z)}}1≤j≤J}1≤i≤N .

Algorithm 2 SMC approximation of p(x1:n|y1:n,θ).
Inputs

- Known parameter vector θ̄in and known initial states,
xi,j0:n−1 and zi,j,l0:h(n−1), for j = 1, . . . , J and l = 0, . . . , L.

Procedure For n ≥ 0:
1) For j = 1, . . . , J :

a) Compute

ũi,jn = p̂L(yn|x̄i,jn ,x
i,j
0:n−1,y1:n−1, θ̄

i
n), (14)

where the new particle x̄i,jn is generated, and the
approximate likelihood is evaluated, at layer 3.

b) Obtain new particles {zi,j,lhn }0≤l≤L at time n, from
layer 3.

c) Normalize the weights

ui,jn =
ũi,jn∑J
j=1 ũ

i,j
n

. (15)

2) Resample: set

{xi,m0:n , {z
i,m,l
hn }0≤l≤L} = {x̄i,jn ,x

i,j
0:n−1, {z

i,j,l
hn }0≤l≤L}

(16)
with probability ui,jn for each m = 1, . . . , J .

Outputs: {xi,j0:n, {z
i,j,l
hn }0≤l≤L}1≤j≤J and {ũi,jn }1≤j≤J .

where W = σ2
xIdx is the covariance matrix of the noise in the

fast state equation. Then, we generate new sigma-points zi,j,lq

from the normal pdf N (ži,jq , Č
i,j

q (z)). Once we reach the time
step q = hn, we use the new fast sigma-points to generate new
slow particles for time n at step 2. To be specific, we project
z̃i,j,lhn in the state equation of the slow state variables to obtain
reference points {x̃i,j,ln }0≤l≤L. Then, we can generate a new
slow particle from the normal distribution N (x̌i,jn , Č

i,j

n (x)),
where the mean and covariance matrix can be expressed as

x̌i,jn =

L∑
l=0

wi,j,lx̃i,j,ln and (19)

Č
i,j

n (x) =

L∑
l=0

wi,j,l(x̃i,j,ln − x̌i,jn )(x̃i,j,ln − x̌i,jn )> + V ,

(20)

and V = σ2
xIdx is the covariance matrix of the noise in

the slow state equation. Next, we can compute exactly the
(non-normalized) weight w̃i,j,ln = p(yn|z̃

i,j,l
hn , x̄

i,j
n , θ̄

i
n) in step

3 and propagate the fast sigma-points and the particle x̄i,jn
through the observation function to obtain projected sigma-
points (on the observation space) {ỹi,j,ln }0≤l≤L. We compute



the observational mean and covariance matrix as

ŷi,jn =

L∑
l=0

wi,j,lỹi,j,ln and (21)

Ci,j
n (y) =

L∑
l=0

wi,j,l(ỹi,j,ln − ŷi,jn )(ỹi,j,ln − ŷi,jn )> +R,

(22)

where R is the covariance matrix of the noise in the obser-
vation equation. Finally, in step 4, we compute the Kalman
gain using the observational covariance matrix of (22) and the
cross-covariance matrix

Ci,j
n (z,y) =

L∑
l=0

wi,j,l(z̃i,j,lq − ži,jq )(ỹi,j,ln − ŷi,jn )>, (23)

and update the mean, ẑi,jhn, and covariance matrix, Ci,j
hn(z) of

the fast variables. Finally, we generate new sigma-points in
step 5.

Given the weights w̃i,j,ln , l = 0, . . . , L in step 3 of Al-
gorithm 3, we can approximate the different likelihoods we
need in the other layers. In Algorithm 2 we approximate
ũi,jn = p̂L(yn|x

i,j
0:n,y1:n−1, θ̄

i
n) as

ũi,jn =

L∑
l=0

wi,j,lw̃i,j,ln . (24)

Similarly, the approximation of ṽin = p̂J,L(yn|y1:n−1, θ̄
i
n) is

computed as

ṽin =
1

J

J∑
j=1

ũi,jn . (25)

IV. EXAMPLE

A. Stochastic two-scale Lorenz 96 model

In order to illustrate the application of the method described
in Section III, we consider a stochastic version of the two-
scale Lorenz 96 model [10], which depends on a set of fixed
parameters, a set of fast variables and a set of slow variables.
The slow variables are represented by a dx-dimensional vector,
x, while the fast variables, z, are dz-dimensional and dz > dx.
The system is described, in continuous-time t, by the stochas-
tic differential equations (SDEs)

dxj =

[
− xj−1(xj−2 − xj+1)− xj + F

− HC

B

Lj−1∑
l=(j−1)L

zl

]
dt+ σxdvj , (32)

dzl =

[
− CBzl+1(zl+2 − zl−1)− Czl +

CF

B

+
HC

B
xb(l−1)Lc

]
dt+ σzdwl, (33)

where j = 1, . . . , dx, l = 1, . . . , dz; v and w are, respectively,
dx and dz-dimensional vectors of independent standard Wiener
processes; σx > 0 and σz > 0 are known scale parameters and

Algorithm 3 UKF approximation of p(zhn|x1:n,y1:n,θ).
Inputs

- Known parameter vector θ̄in and initial states, xi,j0:n−1 and
zi,j,lh(n−1), for l = 0, . . . , L.

- Integration steps ∆x, ∆z and time scale ratio h = ∆x

∆z
∈

Z+.
Procedure For n ≥ 0:

1) For l = 0, . . . , L and for q = h(n− 1) + 1, ..., hn,
a) Integrate with step ∆z

z̃i,j,lq = zi,j,lq−1+∆z(fz(zi,j,lq−1, θ̄
i
n)+gz(xi,jn−1, θ̄

i
n)),
(26)

and compute the predictive mean, ži,jq , and the
predictive covariance matrix, Č

i,j

q (z), of (17) and
(18).

b) Compute L + 1 new sigma points
{zi,j,lq }0≤l≤L from the predictive pdf
p(zq|x0:n−1,y1:n−1, θ̄

i
n) ≈ N (ži,jq , Č

i,j

q (z)).
2) In the space of the slow state variables:

a) For l = 0, . . . , L, propagate the sigma-points
z̃i,j,lh(n−1):hn, integrating with step ∆x,

x̃i,j,ln = xi,jn−1+∆x(fx(xi,jn−1, θ̄
i
n)+gx(z̄i,j,ln , θ̄

i
n)),
(27)

where z̄i,j,ln = 1
h

∑hn
q=h(n−1) z̃

i,j,l
q . Then, compute

the mean x̌i,jn and the covariance matrix Č
i,j

n (x),
of (19) and (20).

b) Sample x̄i,jn ∼ N (x̌i,jn , Č
i,j

n (x)).
3) Once we get a new observation yn,

a) For l = 0, . . . , L, propagate the sigma-points
through the observation function

ỹi,j,ln = l(z̃i,j,lhn , x̄
i,j
n , θ̄

i
n), (28)

and compute the mean, ŷi,jhn, and the covariance
matrix, Ci,j

n (y), of (21) and (22).
b) Compute w̃i,j,ln = p(yn|z̃

i,j,l
hn , x̄

i,j
n , θ̄

i
n).

4) Update the mean and the covariance matrix of the fast
variables

Kn = Ci,j
n (z,y)

(
Ci,j
n (y)

)−1
, (29)

ẑi,jhn = ži,jhn +Kn(ŷi,jn − yn) and (30)

Ci,j
hn(z) = Č

i,j

hn(z) +KnC
i,j
n (y)K>n , (31)

where Ci,j
n (z,y) is the cross-covariance matrix between

z̃i,j,lhn and ỹi,j,lhn , l = 0, . . . , L, in (23).
5) From the new pdf p(zhn|x0:n,y1:n, θ̄

i
) =

N (zhn|ẑi,jhn,C
i,j
n (z)), generate 2dz + 1 sigma-points

and weights {zi,j,lhn , w
i,j,l}0≤l≤L.

Outputs: {zi,j,lhn }0≤l≤L, x̄i,jn and {w̃i,j,ln }0≤l≤L.



α = (F,H,C,B)> ∈ R are static model parameters. Using
a micro-macro solver [7], [8] that runs an Euler-Maruyama
scheme at each time-scale to integrate (32)–(33), the discrete-
time state equation can be written as

xn+1,j =xn,j + ∆x(fx,j(xn,α) + gx,j(z̄n+1,α))

+
√

∆xσxvn+1,j , (34)
zk+1,l =zk,l + ∆z(fz,l(xb kh c

,α) + gz,l(zk,α))

+
√

∆zσzwk+1,l, (35)

where functions fx,j : Rdx×Rdα → Rdx , gx,j : Rdz×Rdα →
Rdx , fz,l : Rdx × Rdα → Rdz and gz,l : Rdz × Rdα → Rdz
can be expressed as

fx,j(x,α) = −xj−1(xj−2 − xj+1)− xj + F,

gx,j(z,α) = −HC
B

Lj−1∑
l=(j−1)L

zl,

fz,l(x,α) =
HC

B
xb(l−1)Lc and

gz,l(z,α) = −CBzl+1(zl+2 − zl−1)− Czl +
CF

B
;

vn and wn are sequences of independent Gaussian random
vectors of dimension dx and dz , with zero mean and covari-
ance matrices σ2

xIdx and σ2
zIdz , respectively.

We assume a linear observation equation of the form

yn =

[
xn
zhn

]
+ rn, (36)

where rn is a dy-dimensional Gaussian random vector with
known covariance matrix

R =

[
σy,xIdy,x 0

0 σy,zIdy,z

]
, (37)

where σy,x, σy,z > 0.

B. Numerical results

We have run simulations for the two-scale Lorenz 96 model
of Section IV-A, with dimensions dx = 10 and dz = 50.
The time steps for the Euler-Maruyama integrators are ∆x =
10−3 and ∆z = 10−4 continuous-time units. We set the fixed
parameters as F = 8, H = 0.75, C = 10 and B = 15.
In order to obtain the inital states x0 and z0, we simulate
a deterministic version of (34)–(35) (σx = σz = 0) for 20
continuous-time units. We set the initial states as the values
of variables x and z at the last time step of this simulation.
This initialization is used in all simulations of this computer
experiment in order to generate both “ground truth” sequences
of xn and zk and the associated sequences of observations yn.

We assume that parameters H and B are known, while we
need to estimate θ = [F,C]>, with dimension dθ = 2. The
prior for the unknown parameters is uniform, namely p(θ) =
U([2, 20]2), while the priors used in the filtering algorithm for
both unknown state variables are Gaussian, namely p(x0) =
N (x0, 0.1Idx) and p(z0) = N (z0, 10Idz ). The noise scaling
factors, σx = 1

2 , σz = 1
16 , σy,x = 10−1 and σy,z = 10−3,

are known. We run the multi-scale hybrid filter with N = 40
and J = 100 particles in the SMC schemes of the first and
second layers of the algorithm. In the third layer, we have
2dz + 1 = 101 sigma-points for the UKF. The jittering kernel
is κθ

′

N (dθ) = N (θ|θ′, σ̃2Idθ ), where σ̃2 = 0.05√
N3

.
We assess the accuracy of the algorithm in terms of the

normalized mean square error (NMSE) of the estimators of the
parameters, the slow state variables and the fast state variables.
In the plots, we show the NMSE computed at time n,

NMSEθ,n =
‖ θn − θ̂n ‖2

‖ θn ‖2
, (38)

NMSEx,n =
‖ xn − x̂n ‖2

‖ xn ‖2
, (39)

NMSEz,n =
‖ zhn − ẑhn ‖2

‖ zhn ‖2
, (40)

averaged over 50 independent simulation runs of 20
continuous-time units each, where the estimators take the form

θ̂n =

N∑
i=1

vinθ̄
i
, (41)

x̂n =

N∑
i=1

J∑
j=1

vinu
i,j
n x̄

i,j
n and (42)

ẑhn =

N∑
i=1

J∑
j=1

vinu
i,j
n ẑ

i,j
hn. (43)

Figure 1 shows the NMSE over time for the parameters
and both state variables. NMSEθ typically stabilizes after 5
continuous-time units of simulation, and it attains values of
the order of 10−3. On the other side, NMSEx and NMSEz
converge more quickly and they yield values around 10−3 and
10−2 respectively.

Figure 2 displays the true values of x1,n and z1,hn for a
typical simulation run, together with their estimators, during
the last two continuous-time unit of the simulation for better
visibility (although, the accuracy obtained is similar during the
whole experiment).

Figure 3 shows the estimated posterior pdf of the parameter
F (plot 3a), the parameter C (plot 3b), the first dimension
of x (plot 3c) and the first dimension of z (plot 3d) at the
last discrete-time step of a single simulation run, together with
their true values. We can see in all these figures that the actual
values of the parameters and signals are placed in a high-
probability region of the density functions computed by the
multi-scale nested filter.

V. CONCLUSIONS

We have introduced a new methodology for tracking the
time evolution and evaluate any static parameters of multi-
scale systems. It is a generalization of NHF [1], where the joint
probability distribution of the parameters and state dynamic
variables (i.e., a multi-scale system of 2 time scales) is approx-
imated using two layers of nested filters given a sequence of
partial and noisy observations.. Although this recursive scheme
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Fig. 1: NMSE of the parameters and both the slow and fast state variables over time.
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Fig. 2: Sequences of the first dimension of the true values of
x (2a) and z (2b) over time in color black, and their estimates
in red and yellow, respectively.
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(a) Posterior density of F .
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(b) Posterior density of C.
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(c) Posterior density of x1,n.
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(d) Posterior density of z1,hn.

Fig. 3: Approximate posterior density functions of θ, x1,n

and z1,hn at the last discrete-time step of a simulation. The
pdf’s for F , C, x1,n and z1:hn are kernel density estimators
obtained from the Monte Carlo samples generated by the
nested filters.

can tackle Bayesian inference for general homogeneous multi-
scale systems (n different time scales), we have analyzed a
dynamical system of 3 time-scales (static parameters, slow

dynamic state variables and fast dynamic state variables).
We have explored the use of SMC schemes in both first
and second layers in order to approximate respectively the
posterior probability distribution of the parameters and the
posterior probability distribution of the slow state variables.
In the third layer, we obtain a Gaussian approximation of the
posterior probability distribution of the fast variables using
UKF. Therefore, the computational cost of the algorithm
increases with NJdz . With this scheme, we have presented
results for a stochastic two-scale Lorenz 96 model.
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of two sequential Monte Carlo methods for maximum a posteriori
sequence estimation and stochastic global optimization.” Statistics and
Computing 23.1 (2013): 91-107.

[10] Arnold, Hannah Mary. Stochastic Parametrisation and Model Uncer-
tanty. Diss. University of Oxford, 2013.


