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Abstract Nested Smoother e We assume that the observations are linear and Gaussian,
namely, -
Lt
We introduce a recursive methodology (based on [1]) for We aim at performing joint Bayesian estimation of the parameters, Yy, = Ay 2, + T, (11)
Bayesian infere.nce of a cl.ass of multi-scale systems (with variables 0, and all states, & and z by approximating the posterior pdt where A, is a known d, x (d, ] d.) it and ris a
that work a,t. dlffer.ent time scales): The proposed scheme O P(Zhts Tot, O1Y14) = p(zn|@or, Y1 O)p(@04|Y14, O)p(Oly 1) (7) d,-dimensional Gaussian random vector with known covariance
bines three intertwined layers of filtering techniques that approxi- ] At
mate recursively the joint posterior probability distribution PO1Y1) x P(yt\ﬁz}lu—ﬁ P(‘?|{{1:t—12 et C v i lat;
of the parameters and both sets of dynamic state vari- Hikelihood of @ posterior pdfat =1 omputer simuiations
ables given a sequence of partial and noisy observations. / likelihood of 6 and @, 214 Jayer
A variety of techniques (Monte Carlo or Gaussian filters such as
p 97 : P L():t, 76 P\Lo: t— 78 dwO: _
State-space Model Vil y110) = | ] ﬂ” ] )Jomfpmji%jp T 33 " | | EnKF, EKF and UKF) can be used in any layer of the filter. For
/ ikclibood of 9, @ and 2, 3 Jayer this experiment we have implemented a SMC-EnKF-EKF.
We consider a class of multidimensional stochastic differen- p(y,|Tot, Yi.si, @ / p(y,|zn, x:, 0) [ntegration step A, =103 and A, =10~
tial equations (SDEs) that can be written as Variables parameters d, =10, R =5 and d. = 50
de = f.(x,0)dT + 9(z,0)dT + Q dv, (1) ~ P(zht‘fBQilert—l’ 0) dzp Fixed model parameters F' =8, H = 0. 75 C' = 10 and B = 15
dz = f,(xz,0)dr + g:(z,0)dr + Q.dw, (2) predictive pdf of 2y Noise scaling factors 05 =5 and 07 = -
® 7 denotes continuous time, | <N I R S Iy O E S
z(7) € R% and z(7) € R are the slow and fast states of the system, In the second layer, the joint predictive pdf of @ is computed as - - A - -
respectively, 50 Lo [N Y o] |
® fr. gz [~ and g, are drift functions parameterized by @ € R%, P (ZEO:t‘yl;t_l, 9) =P (wt‘wO:t—la Yii-15 H)p (wO:t—l‘ylzt—lv 0)7 (8) I I | ] |
o Matrices Q, and @, are diffusion coefficients, and in the third layer we can compute p(ax:|xost_1, Y11, 0) as 07 3 9 0 0 1 92 0~ 9 10 11 013 14 15 16
e and v(7) and w(7) are vectors of independent standard Wiener processes.
7) 7) p(wt\wo:t—layu—p 9) :/P(wt\zh(zﬁ—l)ﬂzht,$0:t—1>y1;t—1> 9) 4 H ¢ b
. > o L | 0V dzr . i Figure: Posterior density of the parameters (dashed lines) at time 7 = 20. The true
Dynamlcal Model p(zh(t 1)+1.ht‘330.t b Y11 ) Zh(=1)+1:he values are indicated by a black vertical line.
We apply a macro-micro solver that runs an Euler- - -
PR . e A Stochastic two-scale Lorenz 96 Model 10 ; ” | L
Maruyama scheme for each set of state variables with dif- ” ff 05 aik
ferent integration steps (A, > A,): O J Jl‘ : | * .O b ol
e The system is described, in continuous-time 7, by the SDEs 3 : ) Al
Ty = @1 + Do fa(®i-1,0) + 92(21,0)) + \/ Q. V1, (3) " e L 0 NN /| : y\/ &ﬁ 05|
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where ¢ € N denotes discrete time in the time scale of the slow - OF Z}E;S)R 0 b 10 15 20 18 185 19 195 20
variables, n € N denotes discrete time in the fast time scale and dz; = | — CBzii1(z1400 — 2121) — Cz A | T|(1-1)/Rr||dT + 0.du T T
hi ! 12 12 ] Figure: Sequences of state values (black line) and estimates (dashed red line) in x4
Zp = » >z (5) Let us assume there are d, slow variables and R fast variables per and z; over time.
i=h(t—1)+1 slow variable, and @ = (I, H,C, B)' € R are static model S £ but
The observations are available only in the (slow) time scale of parameters. ummary O contributions
T
Yy, = U(zpt, x4, 0) + 74 (6) o The discrete-time state equations can be written as ® We have introduced a recursive and multi-layer methodology that

estimates the static parameters and the dynamical variables of a
Tir1j = Tt 5+ Ax(fa:,j<wta 9) + 9:1:] Zt+1, + \/ O-xUtJrl]a

A p class of multi-scale state-space models.

2 = 2 2| n z VAo,Ww 10 . _ . -

References nr1l =z + As(fa (@ 2], 0) + g21(20, 0 + W41, e The inference techniques used in each layer can vary from Monte

1] Pérez-Vieites, S., Marino, I. P., & Miguez, J. (2018). Probabilistic scheme for joint parameter where Clarlo to Gaussian techniques, leading to different Computational
estimation and state prediction in complex dynamical systems. Physical Review E, 98(6). T T " 14 r

— — COSUS all cerees Ol accuracy.

2] Pérez-Vieites, S., Molina-Bulla, H., & Miguez, J. (2022). Nested smoothing algorithms for Lt (xtvo’ Tt xtvdx_l) and “n (vaO’ B vadz_l) ' . 5 Y _ -
inference and tracking of heterogeneous multi-scale state-space systems. arXiv preprint e We have 1mplemented a OMC-SMC-UKF and a SMC-EnKF-EKF
arXiv:2204.07795.

that have obtained good results in terms of accuracy.


sara.perez-vieites@imt-nord-europe.fr
hmolina@tsc.uc3m.es
joaquin.miguez@uc3m.es

