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State-space model

We are interested in systems can be represented by Markov state-space
dynamical models:

x t = f (x t−1,θ) + v t ,

y t = g(x t ,θ) + r t ,

- f , g : state transition
function and observation
function

- v t , r t : state and
observation noises

In terms of a set of relevant probability density functions (pdfs):

● Prior pdfs: θ ∼ p(θ) and x0 ∼ p(x0)
● Transition pdf of the state: x t ∼ p(x t ∣x t−1,θ)
● Conditional pdf of the observation: y t ∼ p(y t ∣x t ,θ)
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State estimation
Classical filtering methods:

Bayesian estimation of the state variables, p(x t ∣y 1∶t ,θ
⋆), assuming

θ⋆ is known.

Every time step t:

1. Predictive distribution:

p(x t ∣y 1∶t−1,θ
⋆) = ∫ p(x t ∣x t−1,θ⋆)p(x t−1∣y 1∶t−1,θ

⋆)dx t (1)

2. Likelihood: p(y t ∣x t ,θ
⋆)

3. Posterior/filtering distribution:

p(x t ∣y 1∶t ,θ
⋆) ∝ (y t ∣x t ,θ

⋆)p(x t ∣y 1∶t−1,θ
⋆) (2)

In practice, θ⋆ is not known. It is needed to
estimate both θ and x t , i.e., p(x t ,θ∣y 1∶t).
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State-of-the-art methods

Methods for Bayesian inference of both θ and x t :

● particle Markov chain Monte Carlo (PMCMC)1

● sequential Monte Carlo square (SMC2)2

● nested particle filters (NPFs)3

Ð→ They can quantify the uncertainty or estimation error.
Ð→ They can be applied to a broad class of models.
Ð→ They provide theoretical guarantees.
Ð→ Both PMCMC and SMC2 are batch techniques, while the NPF

is a recursive method.

1Andrieu, Doucet, and Holenstein 2010.
2Chopin, Jacob, and Papaspiliopoulos 2013.
3Crisan and Mı́guez 2018.
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Model inference

We aim at computing the joint posterior pdf p(θ,x t ∣y 1∶t), that can be
written as

p(x t ,θ∣y 1∶t) = p(x t ∣θ,y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2nd layer

p(θ∣y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1st layer

Ð→ The key difficulty in this class of models is the Bayesian estimation
of the parameter vector θ.
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Model inference
At every time step t:

p(θ∣y 1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pred. pdf of θ

p(y t ∣θ,y 1∶t−1)

p(θ∣y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Post. pdf of θ

∝ p(y t ∣θ,y 1∶t−1)p(θ∣y 1∶t−1)

Filtering (given θ)

p(x t ∣θ,y 1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Pred. pdf of x

p(y t ∣x t ,θ)

p(x t ∣θ,y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Post. pdf of x

1st layer

2nd layer
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Naive importance sampling approximation

At t ≥ 1 and for every θi , i = 1, . . . ,Nθ: SMC (Nθ samples)
to approximate p(θ∣y 1∶t)

Initialisation: Draw {θi}Nθ

i=1 from p(θ)

SMC (Nx samples)
to approximate p(y t ∣y 1∶t−1,θ

i)
For j = 1, . . . ,Nx :

- Likelihood of θi : w̃ i
t = w i

t−1( 1
Nx
∑Nx

j=1 ũ
i,j
t )

- Then, p(θ∣y 1∶t) = ∑
Nθ

i=1w
i
t δθi (dθ), with w i

t =
w̃ i

t

∑Nθ
i=1

w̃ i
t

.

- Draw x̄ i,j
t ∼ p(x t ∣θi ,y 1∶t−1)

- Weights: ũi,jt ∝ p(y t ∣x̄
i,j
t ,θi)

- Resampling: for m = 1, . . . ,Nx , x̃ i,j
t = x̄ i,m

t

with prob. ui,mt = ũi,m
t

∑Nx
j=1

ũi,j
t
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Naive importance sampling approximation

● Careful with p(θ): after several time steps the filter degenerates

● Possible solution: drawing {θi
t} ∼ p(θ∣y 1∶t−1) at each time step Ð→

re-running from scratch the filter for x (i.e., not recursive anymore)

● NPF Ð→ jittering: θ̄
i
t ∼ κNθ

(dθ∣θ′), where

κNθ
(dθ∣θ′) = (1 − ϵNθ

)δθ′(θ) + ϵNθ
κ(dθ∣θ′)

● 0 < ϵNθ
≤ 1√

Nθ

● κ(dθ∣θ′) is an arbitrary Markov kernel with mean θ′ and finite
variance, e.g., κ(dθ∣θ′) = N(θ∣θ′, σ̃2I), with σ̃2 < ∞.

● Guarantees convergence to the true posterior when N Ð→∞
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Nested particle filter (NPF)4

For i = 1, . . . ,Nθ: SMC (Nθ samples)
to approximate p(θ∣y 1∶t)

SMC (Nx samples)

to approximate p(y t ∣y 1∶t−1, θ̄
i
t)

Given θ̄
i
t , for j = 1, . . . ,Nx :

- Jittering: Draw θ̄
i
t ∼ κNθ

(dθ∣θi
t−1)

- Likelihood of θ̄
i
t : w̃

i
t = 1

Nx
∑Nx

j=1 ũ
i,j
t

- Resampling: for l = 1, . . . ,Nθ, {θi
t ,{x

i,j
t }1≤j≤Nx} = {θ̄

l
t ,{x̃

l,j
t }1≤j≤Nx}

with prob. w l
t , so that p(θ∣y 1∶t) = 1

Nθ
∑Nθ

i=1 δθi
t
(dθ)

- Draw x̄ i,j
t ∼ p(x t ∣θ̄

i
t ,y 1∶t−1)

- Weights: ũi,jt ∝ p(y t ∣x̄
i,j
t , θ̄

i
t)

- Resampling: for m = 1, . . . ,Nx , x̃ i,j
t = x̄ i,m

t

with prob. ui,mt = ũi,m
t

∑Nx
j=1

ũi,j
t

4Crisan and Miguez 2017.
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Family of nested filters

1. Nested particle filters (NPFs)5.

● Both layers Ð→ Sequential Monte Carlo (SMC) methods
High computational complexity: Nθ ×Nx

2. Nested hybrid filters (NHFs)6.

● θ-layer Ð→ Monte Carlo-based methods (e.g., SMC or SQMC)
● x-layer Ð→ Gaussian techniques (e.g., EKFs or EnKFs)

3. Nested Gaussian filters (NGFs)7.

● θ-layer Ð→ Deterministic sampling methods (e.g., UKF).
● x-layer Ð→ Gaussian techniques (e.g., EKFs or EnKFs).

5Crisan and Mı́guez 2018.
6Pérez-Vieites, Mariño, and Mı́guez 2017.
7Pérez-Vieites and Mı́guez 2021.
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Reducing number of particles online

Problem: Great amount of samples (Nθ ×Nx) and waste of
computational effort when they are not well chosen.

Possible approach: reducing automatically the number of samples, Nθ,
when the performance is no longer compromised.

We studied the case for a nested Gaussian filter that implements:

● Quadrature Kalman filter (QKF) in the θ-layer, with
Nθ = αdθ , α > 1.

The hyperparameter α will depend on t, so the num-
ber of samples is now defined as Nθ,t = αdθ

t .
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Adaptive reduction rule
New statistic to decide when to reduce Nθ,t :

ρt =
1

∑Nθ,t

n=1 (s̄nt )2
with s̄nt =

p(y t ∣y 1∶t−1,θ
n
t )

∑Nθ,t

n=1 p(y t ∣y 1∶t−1,θ
n
t )

The statistic takes

● its minimum value in ρt = 1, which occurs when only one
p(y t ∣y 1∶t−1,θ

n
t ), for n = 1, . . . ,Nθ,t , is different from zero; and

● its maximum value in ρt = Nθ,t , when for all n = 1, . . . ,Nθ,t , the
evaluations p(y t ∣y 1∶t−1,θ

n
t ) are equal.

The adaptive reduction rule:

● If ρt

Nθ,t
> 1 − ϵ (ρt is close to its maximum value),

Nθ,t+1 = (αt − 1)dθ < Nθ,t , with Nθ,t+1 > Nmin.

● Otherwise, Nθ,t+1 = Nθ,t .
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Numerical results - Lorenz 63

We consider a stochastic Lorenz 63 model, whose dynamics are described
by
● the state variables x t with

dimension dx = 3,
● the static parameters

θ = [S ,R,B]⊺ and

● the following SDEs

dx1 = [−S(x1 − x2)]dτ + σdv1,
dx2 = [Rx1 − x2 − x1x3]dτ + σdv2,
dx3 = [x1x2 −Bx3]dτ + σdv3,
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Numerical results

● Applying a discretization method with step ∆, we obtain

x1,t+1 = x1,t −∆S(x1,t − x2,t) +
√
∆σv1,t ,

x2,t+1 = x2,t +∆[(R − x3,t)x1,t − x2,t] +
√
∆σv2,t ,

x3,t+1 = x3,t +∆(x1,tx2,t −Bx3,t) +
√
∆σv3,t ,

● We assume linear observations of the form

y t = ko [
x1,t
x3,t
] + r t ,

where ko is a fixed known parameter and r t ∼ N(r t ∣0, σ2
y I 2).



19/22

Introduction Nested filters Efficient exploration of the parameter space Conclusions

Numerical results8
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,t

EnKF (state-augmentation) UKF (state-augmentation)

UKF-EKF (NGF) SMC-EKF (NHF)
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10−5

10−3
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τ
N
M
S
E

x,
t

Ð→ The nested schemes outperform the augmented-state methods.

Ð→ The UKF-EKF is three times faster than SMC-EKF.

8Pérez-Vieites and Mı́guez 2021.
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Numerical results9

2 3 4 5 10 20 30
10−2

10−1 Nθ = 8

Nθ = 27

Nθ = 64

ϵ = 10−1
ϵ = 10−2

ϵ = 10−3
ϵ = 10−4
ϵ = 10−5

time (minutes)

N
M
S
E
θ

QKF-EKF
Adaptive QKF-EKF

1. QKF-EKF for different fixed Nθ = {8,27,64}.

2. Adaptive QKF-EKF with Nθ,1 = 64.

9Pérez-Vieites and Elvira 2023.
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Conclusions

1. The nested methodology is online and flexible. It admits different
types of filtering techniques in each layer, leading to a set of
algorithms.

2. For a further reduction of the computational complexity. Automatic
reduction of Nθ when points become less informative Ð→ reduction
of cost for a given performance.
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Thank you!

● Pérez-Vieites, S., & Elvira, V. (2023). Adaptive
Gaussian nested filter for parameter estimation
and state tracking in dynamical systems. In 2023
IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2023).

● Pérez-Vieites & Mı́guez (2021). Nested Gaussian
filters for recursive Bayesian inference and
nonlinear tracking in state space models. Signal
Processing, 189, 108295.

● Pérez-Vieites, Mariño & Mı́guez (2018).
Probabilistic scheme for joint parameter
estimation and state prediction in complex
dynamical systems. Physical Review E, 98(6),
063305.

● Crisan & Mı́guez (2018), Nested particle filters
for online parameter estimation in discrete-time
state-space Markov models. Bernoulli, vol. 24,
no. 4A, pp. 3039–3086.
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