

Learning the number of particles in nested filtering

Sara Pérez Vieites

Aalto University Finnish Center for Artificial Intelligence (FCAI)

SMC 2024

17 May

1/22 Joint work with Joaquín Míguez (Universidad Carlos III de Madrid) and <u>Víctor Elvira</u> (University of Edinburgh).

4 ロ → 4 @ → 4 블 → 4 블 → 1 를 → 9 Q Q + 2/22

Index

[Introduction](#page-2-0)

[Nested filters](#page-11-0) [Model inference](#page-11-0) [Algorithms: Nested particle filter \(NPF\) and others](#page-18-0)

[Efficient exploration of the parameter space](#page-31-0)

[Reducing number of particles online](#page-32-0) [Numerical results for the Lorenz 63](#page-39-0)

[Conclusions](#page-43-0)

[Introduction](#page-2-0) [Nested filters](#page-11-0) [Efficient exploration of the parameter space](#page-31-0) [Conclusions](#page-43-0) 8880

State-space model

We are interested in systems can be represented by **Markov state-space** dynamical models:

$$
x_t = f(x_{t-1}, \theta) + v_t,
$$

$$
y_t = g(x_t, \theta) + r_t,
$$

- f , g : state transition function and observation function

4 ロ → 4 레 → 4 필 → 4 코 → 1 로 → 9 Q Q + 3/22

- \boldsymbol{v}_t , \boldsymbol{r}_t : state and observation noises

In terms of a set of **relevant probability density functions (pdfs)**:

- Prior pdfs: $\theta \sim p(\theta)$ and $x_0 \sim p(x_0)$
- Transition pdf of the state: $\mathbf{x}_t \sim p(\mathbf{x}_t|\mathbf{x}_{t-1}, \boldsymbol{\theta})$
- Conditional pdf of the observation: $y_t \sim p(y_t|x_t, \theta)$

[Introduction](#page-2-0) [Nested filters](#page-11-0) [Efficient exploration of the parameter space](#page-31-0) [Conclusions](#page-43-0) ŏoo
oooo

State-space model

We are interested in systems can be represented by **Markov state-space** dynamical models:

$$
\mathbf{x}_t = \mathbf{f}(\mathbf{x}_{t-1}, \boldsymbol{\theta}) + \mathbf{v}_t, \n\mathbf{y}_t = \mathbf{g}(\mathbf{x}_t, \boldsymbol{\theta}) + \mathbf{r}_t,
$$

- f , g : state transition function and observation function

4 ロ → 4 레 → 4 필 → 4 코 → 1 로 → 9 Q Q + 3/22

- \boldsymbol{v}_t , \boldsymbol{r}_t : state and observation noises

In terms of a set of relevant probability density functions (pdfs):

- Prior pdfs: $\theta \sim p(\theta)$ and $x_0 \sim p(x_0)$
- Transition pdf of the state: $\mathbf{x}_t \sim p(\mathbf{x}_t|\mathbf{x}_{t-1}, \boldsymbol{\theta})$
- Conditional pdf of the observation: $\mathbf{y}_t \sim p(\mathbf{y}_t|\mathbf{x}_t, \boldsymbol{\theta})$

Classical filtering methods:

Bayesian estimation of the state variables, $p(x_t|\mathbf{y}_{1:t}, \theta^*)$, assuming $\boldsymbol{\theta}^{\star}$ is known.

Every time step t:

1. Predictive distribution:

$$
p(\mathbf{x}_t|\mathbf{y}_{1:t-1},\theta^*) = \int p(\mathbf{x}_t|\mathbf{x}_{t-1},\theta^*)p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1},\theta^*)d\mathbf{x}_t \qquad (1)
$$

2. Likelihood: $p(\mathbf{y}_t|\mathbf{x}_t, \boldsymbol{\theta}^*)$

3. Posterior/filtering distribution:

$$
p(\mathbf{x}_t|\mathbf{y}_{1:t},\theta^*) \propto (\mathbf{y}_t|\mathbf{x}_t,\theta^*)p(\mathbf{x}_t|\mathbf{y}_{1:t-1},\theta^*)
$$
 (2)

In practice, $\boldsymbol{\theta}^\star$ is not known. It is needed to es[t](#page-5-0)imate both θ and x_t , i.e., $p(\mathsf{X}_t, \theta | \mathsf{X}_{1:t})$ $p(\mathsf{X}_t, \theta | \mathsf{X}_{1:t})$.

 $999 - 4/22$

Classical filtering methods:

Bayesian estimation of the state variables, $p(x_t|\mathbf{y}_{1:t}, \theta^*)$, assuming $\boldsymbol{\theta}^{\star}$ is known.

Every time step t:

1. Predictive distribution:

$$
p(\mathbf{x}_t|\mathbf{y}_{1:t-1},\boldsymbol{\theta}^*) = \int p(\mathbf{x}_t|\mathbf{x}_{t-1},\boldsymbol{\theta}^*)p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1},\boldsymbol{\theta}^*)d\mathbf{x}_t \qquad (1)
$$

2. Likelihood: $p(\mathbf{y}_t|\mathbf{x}_t, \boldsymbol{\theta}^*)$

3. Posterior/filtering distribution:

$$
p(\mathbf{x}_t|\mathbf{y}_{1:t},\theta^*) \propto (\mathbf{y}_t|\mathbf{x}_t,\theta^*)p(\mathbf{x}_t|\mathbf{y}_{1:t-1},\theta^*)
$$
 (2)

In practice, $\boldsymbol{\theta}^\star$ is not known. It is needed to es[t](#page-6-0)imate both θ and x_t , i.e., $p(\mathsf{X}_t, \theta | \mathsf{X}_{1:t})$ $p(\mathsf{X}_t, \theta | \mathsf{X}_{1:t})$.

 $999 - 4/22$

 \Rightarrow

Classical filtering methods:

Bayesian estimation of the state variables, $p(x_t|\mathbf{y}_{1:t}, \theta^*)$, assuming $\boldsymbol{\theta}^{\star}$ is known.

Every time step t:

1. Predictive distribution:

$$
p(\mathbf{x}_t|\mathbf{y}_{1:t-1},\boldsymbol{\theta}^*) = \int p(\mathbf{x}_t|\mathbf{x}_{t-1},\boldsymbol{\theta}^*)p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1},\boldsymbol{\theta}^*)d\mathbf{x}_t \qquad (1)
$$

- 2. Likelihood: $p(\mathbf{y}_t|\mathbf{x}_t, \boldsymbol{\theta}^*)$
- 3. Posterior/filtering distribution:

$$
p(\mathbf{x}_t|\mathbf{y}_{1:t},\boldsymbol{\theta}^*) \propto (\mathbf{y}_t|\mathbf{x}_t,\boldsymbol{\theta}^*)p(\mathbf{x}_t|\mathbf{y}_{1:t-1},\boldsymbol{\theta}^*)
$$
 (2)

In practice, $\boldsymbol{\theta}^\star$ is not known. It is needed to es[t](#page-7-0)imate both θ and x_t , i.e., $p(\mathsf{X}_t, \theta | \mathsf{X}_{1:t})$ $p(\mathsf{X}_t, \theta | \mathsf{X}_{1:t})$.

 $999 - 4/22$

Classical filtering methods:

Bayesian estimation of the state variables, $p(x_t|\mathbf{y}_{1:t}, \theta^*)$, assuming $\boldsymbol{\theta}^{\star}$ is known.

Every time step t:

1. Predictive distribution:

$$
p(\mathbf{x}_t|\mathbf{y}_{1:t-1},\boldsymbol{\theta}^*) = \int p(\mathbf{x}_t|\mathbf{x}_{t-1},\boldsymbol{\theta}^*)p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1},\boldsymbol{\theta}^*)d\mathbf{x}_t \qquad (1)
$$

- 2. Likelihood: $p(\mathbf{y}_t|\mathbf{x}_t, \boldsymbol{\theta}^*)$
- 3. Posterior/filtering distribution:

$$
p(\mathbf{x}_t|\mathbf{y}_{1:t},\boldsymbol{\theta}^*) \propto (\mathbf{y}_t|\mathbf{x}_t,\boldsymbol{\theta}^*)p(\mathbf{x}_t|\mathbf{y}_{1:t-1},\boldsymbol{\theta}^*)
$$
 (2)

In practice, $\boldsymbol{\theta}^{\star}$ is not known. It is needed to es[t](#page-8-0)imate both θ and x_t , i.e., $p(\mathsf{x}_t, \theta | \mathsf{y}_{1:t})$ $p(\mathsf{x}_t, \theta | \mathsf{y}_{1:t})$.

 290 $A/22$

K □ K K ④ K K 전 B K X 전 보 등 X 이 의 O 2 5 5/22

State-of-the-art methods

Methods for Bayesian inference of both $\boldsymbol{\theta}$ and \boldsymbol{x}_t :

- particle Markov chain Monte Carlo (PMCMC)¹
- \bullet sequential Monte Carlo square $(\mathsf{SMC}^2)^2$
- \bullet nested particle filters (NPFs) 3
	- \rightarrow They can quantify the uncertainty or estimation error.
	- \rightarrow They can be applied to a broad class of models.
	- \rightarrow They provide theoretical guarantees.
	- \rightarrow Both PMCMC and SMC² are batch techniques, while the NPF is a recursive method.

¹Andrieu, Doucet, and Holenstein [2010.](#page-0-0)

²Chopin, Jacob, and Papaspiliopoulos [2013.](#page-0-0)

 3 Crisan and Míguez [2018.](#page-0-0)

K □ K K ④ K K 전 B K X 전 보 등 X 이 의 O 2 5 5/22

State-of-the-art methods

Methods for Bayesian inference of both $\boldsymbol{\theta}$ and \boldsymbol{x}_t :

- particle Markov chain Monte Carlo (PMCMC)¹
- \bullet sequential Monte Carlo square $(\mathsf{SMC}^2)^2$
- nested particle filters $(NPFs)^3$
	- \rightarrow They can quantify the uncertainty or estimation error.
	- \rightarrow They can be applied to a broad class of models.
	- \rightarrow They provide theoretical guarantees.
	- \rightarrow Both PMCMC and SMC² are batch techniques, while the NPF is a recursive method.

¹Andrieu, Doucet, and Holenstein [2010.](#page-0-0)

 2 Chopin, Jacob, and Papaspiliopoulos [2013.](#page-0-0)

 3 Crisan and Míguez [2018.](#page-0-0)

State-of-the-art methods

Methods for Bayesian inference of both $\boldsymbol{\theta}$ and \boldsymbol{x}_t :

- particle Markov chain Monte Carlo (PMCMC)¹
- \bullet sequential Monte Carlo square $(\mathsf{SMC}^2)^2$
- nested particle filters $(NPFs)^3$
	- \rightarrow They can quantify the uncertainty or estimation error.
	- \rightarrow They can be applied to a broad class of models.
	- \rightarrow They provide theoretical guarantees.
	- \rightarrow Both PMCMC and SMC² are batch techniques, while the NPF is a recursive method.

¹Andrieu, Doucet, and Holenstein [2010.](#page-0-0)

 2 Chopin, Jacob, and Papaspiliopoulos [2013.](#page-0-0)

 3 Crisan and Míguez [2018.](#page-0-0)

4 ロ → 4 @ → 4 블 → 4 블 → 1 를 → 9 Q ① 6/22

[Introduction](#page-2-0)

[Nested filters](#page-11-0) [Model inference](#page-11-0) [Algorithms: Nested particle filter \(NPF\) and others](#page-18-0)

[Efficient exploration of the parameter space](#page-31-0) [Reducing number of particles online](#page-32-0) [Numerical results for the Lorenz 63](#page-39-0)

7/22

Model inference

We aim at computing the joint posterior pdf $p(\theta, \mathbf{x}_t | \mathbf{y}_{1:t})$, that can be written as

$$
p(\mathbf{x}_t, \boldsymbol{\theta} | \mathbf{y}_{1:t}) = \underbrace{p(\mathbf{x}_t | \boldsymbol{\theta}, \mathbf{y}_{1:t})}_{2^{nd} | \text{layer}} \underbrace{p(\boldsymbol{\theta} | \mathbf{y}_{1:t})}_{1^{st} | \text{layer}}
$$

 \rightarrow The key difficulty in this class of models is the Bayesian estimation of the parameter vector θ .

8/22

Model inference

At every time step t :

Model inference

At every time step t :

 $p(\boldsymbol{\theta}|\textbf{y}_{1:t}) \propto p(\textbf{y}_t|\boldsymbol{\theta}, \textbf{y}_{1:t-1})p(\boldsymbol{\theta}|\textbf{y}_{1:t-1})$

Post. pdf of θ

Model inference

At every time step t :

 $p(\mathbf{y}_t|\boldsymbol{\theta}, \mathbf{y}_{1:t-1}) = \int p(\mathbf{y}_t|\mathbf{x}_t, \boldsymbol{\theta}) p(\mathbf{x}_t|\boldsymbol{\theta}, \mathbf{y}_{1:t-1}) d\mathbf{x}_t$ $p(\boldsymbol{\theta}|\textbf{y}_{1:t}) \propto p(\textbf{y}_t|\boldsymbol{\theta}, \textbf{y}_{1:t-1})p(\boldsymbol{\theta}|\textbf{y}_{1:t-1})$ Post. pdf of θ

Model inference

At every time step t:

Model inference

At every time step t:

Naive importance sampling approximation At $t \geq 1$ and for every $\boldsymbol{\theta}^i$ SMC (N_{θ} samples) to approximate $p(\theta | \mathbf{y}_{1:t})$ Initialisation: Draw $\{\theta^i\}_{i=1}^{N_{\theta}}$ from $p(\theta)$ SMC $(N_x \text{ samples})$ to approximate $p(\bm{y}_t|\bm{y}_{1:t-1}, \theta^i)$ For $i = 1, \ldots, N_{\mathsf{v}}$: - Likelihood of θ^i : $\tilde{w}_t^i = w_{t-1}^i \Big(\frac{1}{N_x} \sum_{j=1}^{N_x} \tilde{u}_t^{i,j} \Big)$ - Then, $p(\theta | \mathbf{y}_{1:t}) = \sum_{i=1}^{N_{\theta}} w_{t}^{i} \delta_{\theta^{i}}(d\theta)$, with $w_{t}^{j} = \frac{\tilde{w}_{t}^{j}}{\sum_{i=1}^{N_{\theta}} \tilde{w}_{t}^{i}}$. - Draw $\bar{\mathbf{x}}_t^{i,j} \sim p(\mathbf{x}_t | \theta^i, \mathbf{y}_{1:t-1})$ - Weights: $\tilde{u}_t^{i,j} \propto p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{i,j}, \boldsymbol{\theta}^i)$ - Resampling: for $m = 1, \ldots, N_x$, $\tilde{\mathbf{x}}_t^{i,j} = \bar{\mathbf{x}}_t^{i,m}$ with prob. $u_t^{i,m} = \frac{\tilde{u}_t^{i,m}}{\sum_{j=1}^{N_x} \tilde{u}_t^{i,j}}$

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q Q + 9/22

Naive importance sampling approximation At $t \geq 1$ and for every $\boldsymbol{\theta}^i$ SMC (N_{θ} samples) to approximate $p(\theta | \mathbf{y}_{1:t})$ Initialisation: Draw $\{\theta^i\}_{i=1}^{N_{\theta}}$ from $p(\theta)$ SMC $(N_x \text{ samples})$ to approximate $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta^i)$ For $j = 1, \ldots, N_{x}$: - Likelihood of θ^i : $\tilde{w}_t^i = w_{t-1}^i \Big(\frac{1}{N_x} \sum_{j=1}^{N_x} \tilde{u}_t^{i,j} \Big)$ - Then, $p(\theta | \mathbf{y}_{1:t}) = \sum_{i=1}^{N_{\theta}} w_{t}^{i} \delta_{\theta^{i}}(d\theta)$, with $w_{t}^{j} = \frac{\tilde{w}_{t}^{j}}{\sum_{i=1}^{N_{\theta}} \tilde{w}_{t}^{i}}$. - Draw $\bar{\mathbf{x}}_t^{i,j} \sim p(\mathbf{x}_t | \theta^i, \mathbf{y}_{1:t-1})$ - Weights: $\tilde{u}_t^{i,j} \propto p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{i,j}, \boldsymbol{\theta}^i)$ - Resampling: for $m = 1, \ldots, N_x$, $\tilde{\mathbf{x}}_t^{i,j} = \bar{\mathbf{x}}_t^{i,m}$ with prob. $u_t^{i,m} = \frac{\tilde{u}_t^{i,m}}{\sum_{j=1}^{N_x} \tilde{u}_t^{i,j}}$

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q Q + 9/22

Naive importance sampling approximation At $t \geq 1$ and for every $\boldsymbol{\theta}^i$ SMC (N_{θ} samples) to approximate $p(\theta | \mathbf{y}_{1:t})$ Initialisation: Draw $\{\theta^i\}_{i=1}^{N_{\theta}}$ from $p(\theta)$ SMC $(N_x \text{ samples})$ to approximate $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta^i)$ For $j = 1, \ldots, N_{x}$: - Likelihood of θ^i : $\tilde{w}_t^i = w_{t-1}^i \Big(\frac{1}{N_x} \sum_{j=1}^{N_x} \tilde{u}_t^{i,j} \Big)$ - Then, $p(\theta | \mathbf{y}_{1:t}) = \sum_{i=1}^{N_{\theta}} w_{t}^{i} \delta_{\theta^{i}}(d\theta)$, with $w_{t}^{j} = \frac{\tilde{w}_{t}^{j}}{\sum_{i=1}^{N_{\theta}} \tilde{w}_{t}^{i}}$. - Draw $\bar{\mathbf{x}}_t^{i,j} \sim p(\mathbf{x}_t | \boldsymbol{\theta}^i, \mathbf{y}_{1:t-1})$ - Weights: $\tilde{u}_t^{i,j} \propto p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{i,j}, \boldsymbol{\theta}^i)$ - Resampling: for $m = 1, \ldots, N_x$, $\tilde{\mathbf{x}}_t^{i,j} = \bar{\mathbf{x}}_t^{i,m}$ with prob. $u_t^{i,m} = \frac{\tilde{u}_t^{i,m}}{\sum_{j=1}^{N_x} \tilde{u}_t^{i,j}}$

4 ロ ▶ 4 레 ▶ 4 페 ▶ 4 페 ★ 페 ▶ 시 페 게 페 메 게 제 페 게 제 제 기
222

Naive importance sampling approximation At $t \geq 1$ and for every $\boldsymbol{\theta}^i$ SMC (N_{θ} samples) to approximate $p(\theta | \mathbf{y}_{1:t})$ Initialisation: Draw $\{\theta^i\}_{i=1}^{N_{\theta}}$ from $p(\theta)$ SMC $(N_x \text{ samples})$ to approximate $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta^i)$ For $j = 1, \ldots, N_{x}$: - Likelihood of θ^i : $\tilde{w}_t^i = w_{t-1}^i \Big(\frac{1}{N_x} \sum_{j=1}^{N_x} \tilde{u}_t^{i,j} \Big)$ - Then, $p(\theta | \mathbf{y}_{1:t}) = \sum_{i=1}^{N_{\theta}} w_{t}^{i} \delta_{\theta^{i}}(d\theta)$, with $w_{t}^{j} = \frac{\tilde{w}_{t}^{j}}{\sum_{i=1}^{N_{\theta}} \tilde{w}_{t}^{i}}$. - Draw $\bar{\mathbf{x}}_t^{i,j} \sim p(\mathbf{x}_t | \boldsymbol{\theta}^i, \mathbf{y}_{1:t-1})$ - Weights: $\tilde{u}_t^{i,j} \propto p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{i,j}, \theta^i)$ - Resampling: for $m = 1, \ldots, N_x$, $\tilde{\mathbf{x}}_t^{i,j} = \bar{\mathbf{x}}_t^{i,m}$ with prob. $u_t^{i,m} = \frac{\tilde{u}_t^{i,m}}{\sum_{j=1}^{N_x} \tilde{u}_t^{i,j}}$

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q Q + 9/22

Naive importance sampling approximation At $t \geq 1$ and for every $\boldsymbol{\theta}^i$ SMC (N_{θ} samples) to approximate $p(\theta | \mathbf{y}_{1:t})$ Initialisation: Draw $\{\theta^i\}_{i=1}^{N_{\theta}}$ from $p(\theta)$ SMC $(N_x \text{ samples})$ to approximate $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta^i)$ For $j = 1, \ldots, N_{x}$: - Draw $\bar{\mathbf{x}}_t^{i,j} \sim p(\mathbf{x}_t | \boldsymbol{\theta}^i, \mathbf{y}_{1:t-1})$ - Weights: $\tilde{u}_t^{i,j} \propto p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{i,j}, \theta^i)$ - Resampling: for $m = 1, \ldots, N_x$, $\tilde{\mathbf{x}}_t^{i,j} = \bar{\mathbf{x}}_t^{i,m}$ with prob. $u_t^{i,m} = \frac{\tilde{u}_t^{i,m}}{\sum_{j=1}^{N_x} \tilde{u}_t^{i,j}}$

- Likelihood of θ^i : $\tilde{w}_t^i = w_{t-1}^i \Big(\frac{1}{N_x} \sum_{j=1}^{N_x} \tilde{u}_t^{i,j} \Big)$ - Then, $p(\theta | \mathbf{y}_{1:t}) = \sum_{i=1}^{N_{\theta}} w_{t}^{i} \delta_{\theta^{i}}(d\theta)$, with $w_{t}^{j} = \frac{\tilde{w}_{t}^{j}}{\sum_{i=1}^{N_{\theta}} \tilde{w}_{t}^{i}}$.

Naive importance sampling approximation At $t \geq 1$ and for every $\boldsymbol{\theta}^i$ SMC (N_{θ} samples) to approximate $p(\theta | \mathbf{y}_{1:t})$ Initialisation: Draw $\{\theta^i\}_{i=1}^{N_{\theta}}$ from $p(\theta)$ SMC $(N_x \text{ samples})$ to approximate $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta^i)$ For $j = 1, \ldots, N_{x}$: - Likelihood of θ^i : $\tilde{w}_t^i = w_{t-1}^i \Big(\frac{1}{N_x} \sum_{j=1}^{N_x} \tilde{u}_t^{i,j} \Big)$ - Draw $\bar{\mathbf{x}}_t^{i,j} \sim p(\mathbf{x}_t | \boldsymbol{\theta}^i, \mathbf{y}_{1:t-1})$ - Weights: $\tilde{u}_t^{i,j} \propto p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{i,j}, \theta^i)$ - Resampling: for $m = 1, \ldots, N_x$, $\tilde{\mathbf{x}}_t^{i,j} = \bar{\mathbf{x}}_t^{i,m}$ with prob. $u_t^{i,m} = \frac{\tilde{u}_t^{i,m}}{\sum_{j=1}^{N_x} \tilde{u}_t^{i,j}}$

- Then, $p(\theta | \mathbf{y}_{1:t}) = \sum_{i=1}^{N_{\theta}} w_{t}^{i} \delta_{\theta^{i}}(d\theta)$, with $w_{t}^{j} = \frac{\tilde{w}_{t}^{j}}{\sum_{i=1}^{N_{\theta}} \tilde{w}_{t}^{i}}$.

Naive importance sampling approximation At $t \geq 1$ and for every $\boldsymbol{\theta}^i$ SMC (N_{θ} samples) to approximate $p(\theta | \mathbf{y}_{1:t})$ Initialisation: Draw $\{\theta^i\}_{i=1}^{N_{\theta}}$ from $p(\theta)$ SMC $(N_x \text{ samples})$ to approximate $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta^i)$ For $j = 1, \ldots, N_{x}$: - Likelihood of θ^i : $\tilde{w}_t^i = w_{t-1}^i \Big(\frac{1}{N_x} \sum_{j=1}^{N_x} \tilde{u}_t^{i,j} \Big)$ - Then, $p(\theta|\mathbf{y}_{1:t}) = \sum_{i=1}^{N_{\theta}} w_{t}^{i} \delta_{\theta^{i}}(d\theta)$, with $w_{t}^{i} = \frac{\tilde{w}_{t}^{i}}{\sum_{i=1}^{N_{\theta}} \tilde{w}_{t}^{i}}$. - Draw $\bar{\mathbf{x}}_t^{i,j} \sim p(\mathbf{x}_t | \boldsymbol{\theta}^i, \mathbf{y}_{1:t-1})$ - Weights: $\tilde{u}_t^{i,j} \propto p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{i,j}, \theta^i)$ - Resampling: for $m = 1, \ldots, N_x$, $\tilde{\mathbf{x}}_t^{i,j} = \bar{\mathbf{x}}_t^{i,m}$ with prob. $u_t^{i,m} = \frac{\tilde{u}_t^{i,m}}{\sum_{j=1}^{N_x} \tilde{u}_t^{i,j}}$

4 ロ ▶ 4 레 ▶ 4 페 ▶ 4 페 ★ 페 ▶ 시 페 게 페 메 게 제 페 게 제 제 기
222

 $i=1$ t

Naive importance sampling approximation

- Careful with $p(\theta)$: after several time steps the filter degenerates
- Possible solution: drawing $\{\theta_i^i\} \sim p(\theta | \mathbf{y}_{1:t-1})$ at each time step \longrightarrow re-running from scratch the filter for x (i.e., not recursive anymore)

• NPF
$$
\longrightarrow
$$
 jittering: $\bar{\theta}'_t \sim \kappa_{N_\theta}(d\theta|\theta')$, where

$$
\kappa_{N_{\theta}}(d\theta|\theta')=(1-\epsilon_{N_{\theta}})\delta_{\theta'}(\theta)+\epsilon_{N_{\theta}}\kappa(d\theta|\theta')
$$

$$
\bullet \quad 0 < \epsilon_{N_\theta} \leq \tfrac{1}{\sqrt{N_\theta}}
$$

- $\kappa(d\theta|\theta')$ is an arbitrary Markov kernel with mean θ' and finite variance, e.g., $\kappa(d\theta|\theta') = \mathcal{N}(\theta|\theta', \tilde{\sigma}^2 I)$, with $\tilde{\sigma}^2 < \infty$.
- Guarantees convergence to the true posterior when $N \rightarrow \infty$

10/22

Naive importance sampling approximation

- Careful with $p(\theta)$: after several time steps the filter degenerates
- Possible solution: drawing $\{\theta_i^i\} \sim p(\theta | \mathbf{y}_{1:t-1})$ at each time step \longrightarrow re-running from scratch the filter for x (i.e., not recursive anymore)

• NPF \longrightarrow jittering: $\bar{\theta}_t^i \sim \kappa_{N_\theta}(d\theta|\theta'),$ where

$$
\kappa_{N_{\theta}}(d\theta|\theta')=(1-\epsilon_{N_{\theta}})\delta_{\theta'}(\theta)+\epsilon_{N_{\theta}}\kappa(d\theta|\theta')
$$

$$
\bullet \quad 0 < \epsilon_{N_{\theta}} \leq \frac{1}{\sqrt{N_{\theta}}}
$$

- $\kappa(d\theta|\theta')$ is an arbitrary Markov kernel with mean θ' and finite variance, e.g., $\kappa(d\theta|\theta') = \mathcal{N}(\theta|\theta', \tilde{\sigma}^2 I)$, with $\tilde{\sigma}^2 < \infty$.
- Guarantees convergence to the true posterior when $N \rightarrow \infty$

Nested particle filter (NPF)⁴

For
$$
i = 1, ..., N_{\theta}
$$
:
\n- Jittering: Draw $\bar{\theta}_{t}^{i} \sim \kappa_{N_{\theta}}(d\theta | \theta_{t-1}^{i})$
\nGiven $\bar{\theta}_{t}^{i}$, for $j = 1, ..., N_{x}$:
\n- Draw $\bar{x}_{t}^{i,j} \sim p(x_{t} | \bar{\theta}_{t}^{i}, y_{1:t-1})$
\n- Draw $\bar{x}_{t}^{i,j} \sim p(x_{t} | \bar{\theta}_{t}^{i}, y_{1:t-1})$
\n- Weights: $\tilde{u}_{t}^{i,j} \propto p(y_{t} | \bar{x}_{t}^{i,j}, \bar{\theta}_{t}^{i})$
\n- Resampling: for $m = 1, ..., N_{x}$, $\tilde{x}_{t}^{i,j} = \bar{x}_{t}^{i,m}$
\nwith prob. $u_{t}^{i,m} = \frac{\tilde{u}_{t}^{i,m}}{\sum_{j=1}^{N_{x}} \tilde{u}_{t}^{i,j}}$
\n- Likelihood of $\bar{\theta}_{t}^{i}$: $\tilde{w}_{t}^{i} = \frac{1}{N_{x}} \sum_{j=1}^{N_{x}} \tilde{u}_{t}^{i,j}$
\n- Resampling: for $l = 1, ..., N_{\theta}$, $\{\theta_{t}^{i}, \{x_{t}^{i,j}\}_{1 \leq j \leq N_{x}}\} = \{\bar{\theta}_{t}^{l}, \{\tilde{x}_{t}^{l,j}\}_{1 \leq j \leq N_{x}}\}$
\nwith prob. w_{t}^{l} , so that $p(\theta | y_{1:t}) = \frac{1}{N_{\theta}} \sum_{i=1}^{N_{\theta}} \delta_{\theta_{i}}(d\theta)$

⁴Crisan and Miguez [2017.](#page-0-0)

12/22 12/22 12/24 12/24 12/22

Family of nested filters

- 1. Nested particle filters $(NPFs)^5$.
	- Both layers \longrightarrow Sequential Monte Carlo (SMC) methods High computational complexity: $N_{\theta} \times N_{x}$

2. Nested hybrid filters $(NHFs)^6$.

- \bullet θ -layer \longrightarrow Monte Carlo-based methods (e.g., SMC or SQMC)
- x -layer \longrightarrow Gaussian techniques (e.g., EKFs or EnKFs)
- 3. Nested Gaussian filters $(NGFs)^7$.
	- θ -layer \longrightarrow Deterministic sampling methods (e.g., UKF).
	- x -layer \longrightarrow Gaussian techniques (e.g., EKFs or EnKFs).

5 Crisan and Míguez [2018.](#page-0-0)

 $6P$ _{érez}-Vieites, Mariño, and Míguez [2017.](#page-0-0)

Pérez-Vieites and Míguez [2021.](#page-0-0)

12/22

Family of nested filters

- 1. Nested particle filters $(NPFs)^5$.
	- Both layers \longrightarrow Sequential Monte Carlo (SMC) methods High computational complexity: $N_{\theta} \times N_{x}$
- $2.$ Nested hybrid filters $(\mathsf{NHFs})^6.$
	- \bullet θ -layer \longrightarrow Monte Carlo-based methods (e.g., SMC or SQMC)
	- x -layer \longrightarrow Gaussian techniques (e.g., EKFs or EnKFs)
- 3. Nested Gaussian filters $(NGFs)^7$.
	- θ -layer \longrightarrow Deterministic sampling methods (e.g., UKF).
	- x -layer \longrightarrow Gaussian techniques (e.g., EKFs or EnKFs).

 $6P$ érez-Vieites, Mariño, and Míguez [2017.](#page-0-0)

Pérez-Vieites and Míguez [2021.](#page-0-0)

⁵Crisan and Míguez [2018.](#page-0-0)

12/22

Family of nested filters

- 1. Nested particle filters $(NPFs)^5$.
	- Both layers \longrightarrow Sequential Monte Carlo (SMC) methods High computational complexity: $N_{\theta} \times N_{x}$
- $2.$ Nested hybrid filters $(\mathsf{NHFs})^6.$
	- \bullet θ -layer \longrightarrow Monte Carlo-based methods (e.g., SMC or SQMC)
	- x -layer \longrightarrow Gaussian techniques (e.g., EKFs or EnKFs)
- 3. Nested Gaussian filters $(NGFs)^7$.
	- θ -layer \longrightarrow Deterministic sampling methods (e.g., UKF).
	- x -layer \longrightarrow Gaussian techniques (e.g., EKFs or EnKFs).

⁵Crisan and Míguez [2018.](#page-0-0)

 $6P$ érez-Vieites, Mariño, and Míguez [2017.](#page-0-0)

 7 Pérez-Vieites and Míguez [2021.](#page-0-0)

1日 → 1日 → 1월 → 1월 → 1월 → 990 + 13/22

Index

 8880

[Introduction](#page-2-0)

[Nested filters](#page-11-0) [Model inference](#page-11-0) [Algorithms: Nested particle filter \(NPF\) and others](#page-18-0)

[Efficient exploration of the parameter space](#page-31-0) [Reducing number of particles online](#page-32-0) [Numerical results for the Lorenz 63](#page-39-0)

14/22 14/22 14/22 14/22 14/22

Reducing number of particles online

Problem: Great amount of samples $(N_{\theta} \times N_{x})$ and waste of computational effort when they are not well chosen.

Possible approach: reducing automatically the number of samples, N_{θ} , when the performance is no longer compromised.

We studied the case for a nested Gaussian filter that implements:

• Quadrature Kalman filter (QKF) in the θ -layer, with $N_{\theta} = \alpha^{d_{\theta}}, \alpha > 1.$

14/22 14/22 14/22 14/22 14/22

Reducing number of particles online

Problem: Great amount of samples $(N_{\theta} \times N_{x})$ and waste of computational effort when they are not well chosen.

Possible approach: reducing automatically the number of samples, N_{θ} , when the performance is no longer compromised.

We studied the case for a nested Gaussian filter that implements:

• Quadrature Kalman filter (QKF) in the θ -layer, with $N_{\theta} = \alpha^{d_{\theta}}, \alpha > 1.$

14/22

Reducing number of particles online

Problem: Great amount of samples $(N_{\theta} \times N_{x})$ and waste of computational effort when they are not well chosen.

Possible approach: reducing automatically the number of samples, N_{θ} , when the performance is no longer compromised.

We studied the case for a nested Gaussian filter that implements:

Quadrature Kalman filter (QKF) in the θ -layer, with $N_{\theta} = \alpha^{d_{\theta}}, \alpha > 1.$

14/22

Reducing number of particles online

Problem: Great amount of samples $(N_{\theta} \times N_{x})$ and waste of computational effort when they are not well chosen.

Possible approach: reducing automatically the number of samples, N_{θ} , when the performance is no longer compromised.

We studied the case for a nested Gaussian filter that implements:

• Quadrature Kalman filter (QKF) in the θ -layer, with $N_{\theta} = \alpha^{d_{\theta}}, \alpha > 1.$

Adaptive reduction rule

New statistic to decide when to reduce $\mathcal{N}_{\boldsymbol{\theta},t}$:

$$
\rho_t = \frac{1}{\sum_{n=1}^{N_{\theta,t}} (\bar{s}_t^n)^2}
$$
 with
$$
\bar{s}_t^n = \frac{p(\mathbf{y}_t | \mathbf{y}_{1:t-1}, \theta_t^n)}{\sum_{n=1}^{N_{\theta,t}} p(\mathbf{y}_t | \mathbf{y}_{1:t-1}, \theta_t^n)}
$$

The statistic takes

- its **minimum value in** $\rho_t = 1$, which occurs when only one $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta_t^n)$, for $n = 1, ..., N_{\theta,t}$, is different from zero; and
- its **maximum value in** $\rho_t = N_{\theta,t}$, when for all $n = 1, ..., N_{\theta,t}$, the evaluations $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta_t^n)$ are equal.

15/22 The adaptive reduction rule: • If $\frac{\rho_t}{N_{\theta,t}} > 1 - \epsilon$ (ρ_t is close to its maximum value), $N_{\theta,t+1} = (\alpha_t - 1)^{d_{\theta}} < N_{\theta,t}$, with $N_{\theta,t+1} > N_{\text{min}}$. • Otherwise, $N_{\theta, t+1} = N_{\theta, t}$.

Adaptive reduction rule

New statistic to decide when to reduce $\mathcal{N}_{\boldsymbol{\theta},t}$:

$$
\rho_t = \frac{1}{\sum_{n=1}^{N_{\theta,t}} (\bar{s}_t^n)^2}
$$
 with
$$
\bar{s}_t^n = \frac{p(\mathbf{y}_t | \mathbf{y}_{1:t-1}, \theta_t^n)}{\sum_{n=1}^{N_{\theta,t}} p(\mathbf{y}_t | \mathbf{y}_{1:t-1}, \theta_t^n)}
$$

The statistic takes

- its **minimum value in** $\rho_t = 1$, which occurs when only one $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta_t^n)$, for $n = 1, ..., N_{\theta,t}$, is different from zero; and
- its **maximum value in** $\rho_t = N_{\theta,t}$, when for all $n = 1, ..., N_{\theta,t}$, the evaluations $p(\mathbf{y}_t|\mathbf{y}_{1:t-1}, \theta_t^n)$ are equal.

The adaptive reduction rule:

\n- If
$$
\frac{\rho_t}{N_{\theta,t}} > 1 - \epsilon
$$
 (ρ_t is close to its maximum value),\n $N_{\theta,t+1} = (\alpha_t - 1)^{d_{\theta}} < N_{\theta,t}$, with $N_{\theta,t+1} > N_{\min}$.
\n- Otherwise, $N_{\theta,t+1} = N_{\theta,t}$.
\n

1日 → 1日 → 1월 → 1월 → 1월 → 990 + 16/22

Index

[Introduction](#page-2-0)

[Nested filters](#page-11-0) [Model inference](#page-11-0) [Algorithms: Nested particle filter \(NPF\) and others](#page-18-0)

[Efficient exploration of the parameter space](#page-31-0) [Reducing number of particles online](#page-32-0) [Numerical results for the Lorenz 63](#page-39-0)

Numerical results - Lorenz 63

We consider a stochastic Lorenz 63 model, whose dynamics are described by

- the state variables x_t with dimension $d_x = 3$,
- the static parameters $\boldsymbol{\theta} = [\boldsymbol{S}, \boldsymbol{R}, \boldsymbol{B}]^\top$ and
- the following **SDEs**

$$
dx_1 = [-S(x_1 - x_2)]d\tau + \sigma dv_1,
$$

\n
$$
dx_2 = [Rx_1 - x_2 - x_1x_3]d\tau + \sigma dv_2,
$$

\n
$$
dx_3 = [x_1x_2 - Bx_3]d\tau + \sigma dv_3,
$$

10→1日→1号→1号→1号→20 990 17/22

18/22

Numerical results

• Applying a discretization method with step Δ , we obtain

$$
x_{1,t+1} = x_{1,t} - \Delta S(x_{1,t} - x_{2,t}) + \sqrt{\Delta} \sigma v_{1,t},
$$

\n
$$
x_{2,t+1} = x_{2,t} + \Delta [(R - x_{3,t})x_{1,t} - x_{2,t}] + \sqrt{\Delta} \sigma v_{2,t},
$$

\n
$$
x_{3,t+1} = x_{3,t} + \Delta (x_{1,t}x_{2,t} - Bx_{3,t}) + \sqrt{\Delta} \sigma v_{3,t},
$$

• We assume linear observations of the form

$$
\boldsymbol{y}_t = k_o \begin{bmatrix} x_{1,t} \\ x_{3,t} \end{bmatrix} + \boldsymbol{r}_t,
$$

where k_o is a fixed known parameter and $\bm{r}_t \sim \mathcal{N}(\bm{r}_t | \bm{0}, \sigma_y^2 \bm{I}_2).$

19/22 19/22 19/24 12:22 12:24 12:25

Numerical results⁸

- \rightarrow The nested schemes outperform the augmented-state methods.
- \rightarrow The UKF-EKF is three times faster than SMC-EKF.

 $8P$ érez-Vieites and Míguez [2021.](#page-0-0)

4 ロ → 4 @ ▶ 4 로 → 4 로 → 2 로 → 9 Q Q + 20/22

Numerical results⁹

- 1. QKF-EKF for different fixed $N_{\theta} = \{8, 27, 64\}.$
- 2. Adaptive QKF-EKF with $N_{\theta,1} = 64$.

⁹Pérez-Vieites and Elvira [2023.](#page-0-0)

[Introduction](#page-2-0) Mested filters [Efficient exploration of the parameter space](#page-31-0) [Conclusions](#page-43-0)

2000

2000 8000 8880

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q Q + 21/22

Conclusions

- 1. The nested methodology is online and flexible. It admits different types of filtering techniques in each layer, leading to a set of algorithms.
- 2. For a further reduction of the computational complexity. Automatic reduction of N_{θ} when points become less informative \longrightarrow reduction of cost for a given performance.

[Introduction](#page-2-0) Mested filters [Efficient exploration of the parameter space](#page-31-0) [Conclusions](#page-43-0)

2000

2000 8000 000
0000

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q Q + 21/22

Conclusions

- 1. The nested methodology is online and flexible. It admits different types of filtering techniques in each layer, leading to a set of algorithms.
- 2. For a further reduction of the computational complexity. Automatic reduction of N_{θ} when points become less informative \longrightarrow reduction of cost for a given performance.

[Introduction](#page-2-0) Mested filters [Efficient exploration of the parameter space](#page-31-0) [Conclusions](#page-43-0)

2000

2000 8000 ŏoo
oooo

Thank you!

- Pérez-Vieites, S., & Elvira, V. (2023). Adaptive Gaussian nested filter for parameter estimation and state tracking in dynamical systems. In 2023 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2023).
- Pérez-Vieites & Míguez (2021). Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models. Signal Processing, 189, 108295.
- Pérez-Vieites, Mariño & Míguez (2018). Probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems. Physical Review E, 98(6), 063305.
- Crisan & Míguez (2018), Nested particle filters for online parameter estimation in discrete-time state-space Markov models. Bernoulli, vol. 24, no. 4A, pp. 3039–3086.

sarapv.github.io

Sara Pérez Vieites

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → 2 → 9 Q Q + 22/22