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State-of-the-art Methods

• Very-large-scale stochastic dynamic models of real world phenomena,

where we estimate

• dynamic variables and
• unknown static parameters.
⇒ Conventional prediction and estimation methods are not well suited.

• State-of-the-art algorithms:

1. Bayesian methods (SMC2 [Chopin et al, 2012], pMCMC [Andrieu et
al, 2010])

• approximate the posterior distribution of the unknown
variables and parameters, but

• they are non-recursive.

2. Maximum likelihood estimators

• provide point estimates only
• recursive, but no measure of uncertainty
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Contributions

• A purely recursive generic nested filtering scheme is
introduced.

1. The nested particle filter [Crisan and Miguez, 2016] is a particular
case, which infers the posterior distribution of variables and
parameters

• using a bank of particle filters.
• it is computationally costly.

2. Therefore, a new class of nested hybrid filters is proposed, using

• a bank of Gaussian filters such as EKF or EnKF, and
• reducing running times without significant changes in

accuracy.

• A stochastic two-scale Lorenz 96 model is used in computer
simulations.

⇒ It is a benchmark system for meteorology.
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State-space model

• The dynamical behaviour of the system state can be modeled by sets of
nonlinear stochastic differential equations (SDEs), like:

dx = f (x ,θ)dt + dW (1)

where f (x̃) is a nonlinear function parametrized by θ and dW is a
brownian process.
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State-space model

• The value of the system state can be approximated applying any sort of
discretization method as

x̃k = x̃k−1 + hf̄ σ(x̃k−1,θ, v k) (2)

where

• f̄ σ(x̃k−1,θ,v k) is an estimate of the vector of time derivatives
• h > 0 is a time-discretisation step with k = 0,1, . . . and
• σ ≥ 0 is a parameter that controls the power of the

perturbations, that needs to be small enough to preserve the
underlying dynamics of the system
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Observations

States, x̃k , and unknown parameters, θ, are estimated from a sequence of
observation vectors, modelled as

ỹ kT = gσo (x̃kT ,θ, ũkT ), k = 1,2, . . . , T ≥ 1, (3)

where

• gσo ∶ R
dx → Rdy , being the observation vectors of dimension dy ≤ dx ,

• T is the discrete observation period and

• ũk is a sequence of zero-mean independent vectors representing
observational noise, where power is scaled by a known factor σo > 0.
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Dynamical Model

• As we only consider observations every T discrete time steps, it is
convenient to rewrite the dynamic model in the same time scale. We
work with the pair of random sequences xn ∶= x̃nT and y n ∶= ỹ nT , as

y n = gσo (xn,θ,un), (4)

xn = F̄T ,σ(xn−1,θ, v n), n = 1,2, . . . (5)

• Here F̄ represents the transformation from xn−1 ∶= x̃(n−1)T to xn ∶= x̃nT in
T steps as

x̃(n−1)T = xn−1

x̃(n−1)T+1 = x̃(n−1)T + f̄ σ(x̃(n−1)T ,θ, ṽ (n−1)T+1)
⋮

x̃nT−1 = x̃nT−2 + f̄ σ(x̃nT−2,θ, ṽ nT−1)
xn = x̃nT−1 + f̄ σ(x̃nT−1,θ, ṽ nT )

(6)
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Objective

• The aim of this work is to estimate the parameters θ and its posterior
distribution p(θ∣y).

• We combine Monte Carlo with other auxiliary filters for that purpose.
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Nested filtering

• The following (naive) algorithm yields a weighted Monte Carlo

approximation of p(θ∣y 1∶n)dθ at each time n:

1. Draw N i.i.d. samples θi
n, i = 1,2, . . . ,N, from p(θ∣y 1∶n−1).

2. Compute importance weights,

w̃ i
n = p(y n∣θ

i
n, y 1∶n−1), i = 1, . . . ,N, (7)

and normalise them. We obtain the IS estimate
p(θ∣y 1∶n)dθ = ∑N

i=1 w
i
nδθi

n
(dθ).

• This weighted Monte Carlo approximation is not practical because

• it is not possible to draw from p(θ∣y 1∶n), at least exactly, and
• the likelihood un(θi

n) ∶= p(yn∣θi
n,y 1∶n−1) cannot be evaluated

exactly either.

• We can obtain an estimate of un(θ) if we approximate first the predictive
measure p(xn∣θ, y 1∶n−1)dxn since it can be rewritten as

un(θ) = ∫ p(y n∣xn,θ)p(xn∣θ, y 1∶n−1)d(xn) (8)
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General Nested Filter

Algorithm
1. Initialisation

Draw θ
(i)
0 , i = 1, . . . ,N, i.i.d. samples from

p(θ)dθ.

2. Recursive step

2.1 For i = 1, . . . ,N:

2.1.1 Draw θ̄
(i)
n from κN(dθ∣θi

n−1).

2.1.2 Approximate p(xn∣θ̄
i
n, y 1∶n−1)dxn.

2.1.3 Use p(xn∣θ̄
i
n, y 1∶n−1)dxn to

compute ûn(θ̄
i
n) and let

w i
n ∝ ûn(θ̄

i
n) be the normalised

weight of θ̄
i
n.

2.2 Resample to obtain the set {θN
i=1}

and the approximation
p̂(dθ∣y 1∶n) = 1

N ∑
N
i=1 δθi

n
(dθ).
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General Nested Filter
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NHF via EKF

Sampling θ̄
(i)
n
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i
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i
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i
n, y 1∶n)dxn
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n, y 1∶n)dxn and p̂(dθ∣y)
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Resampling

Let us assume p(x0) = N (x0∣x̄0, P̄0),
v k ∼ N (v k ∣0,Q) and uk ∼ N (uk ∣0,R).
Functions f̄ in Eq. (2) and g in Eq. (4) are
nonlinear and differentiable, with J f̄ ,x,θ and Jg,x,θ

denoting their respective Jacobian matrices
evaluated at the point x and θ.

Algorithm

1. Initialisation: draw N i.i.d. particles
θi

0 ∼ p(θ)dθ, i = 1, . . . ,N. Let x̄ i
0 = x̄0 and

P̄ i
0 = P0 for every i .

2. Recursive step: at time n, we have available
p(θ∣y 1∶n−1)dθ ≈ 1

N ∑
N
i=1 δθ̄i

n−1
(dθ) and, for

each i = 1, . . . ,N, p(xn∣θi
n−1, y 1∶n−1)dxn−1 ≈

N (xn−1∣x̄ i
n−1, P̄

i
n−1)dxn.
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Sampling θ̄
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(a) Prediction:

i Draw θ̄
i
n ∼ κN(dθ∣θi

n−1), i = 1, . . . ,N.

ii Let x̆ i
0 = x̄ i

n−1 and P̆
i

0 = P̄ i
n−1,

i = 1, . . . ,N. Then, for each i and
k = 1, . . . ,T compute

x̆ i
k = f̄ σ(x̆ i

k−1, θ̄
i
n,0), (9)

P̆
i

k = J f̄ ,x̆ i
k−1

,θ̄i
n
P̆

i

k−1J
⊺
f̄ ,x̆ i

k−1
,θ̄i

n
+ σ2Q (10)

iii Set p(xn∣θ̄
i
n, y 1∶n−1)dxn = N (xn∣x̂ i

n, P̂
i

n)dxn

where x̂ i
n = x̆ i

T and P̂
i

n = P̂
i

T .



Introduction Nested Hybrid Filters Convergence Analysis Numerical results SQMC Conclusions

Sampling θ̄
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(b) Update:

i For i = 1, . . . ,N, compute

S i
n = Jg,x̂ in,θ̄

i
n
P̂

i

nJ
⊺
g,x̂ in,θ̄

i
n
+ σ2

oR (11)

K i
n = P̂

i

nJ
⊺
g,x̂ in,θ̄

i
n
(S i

n)−1 (12)

x̌ i
n = x̂ i

n +K i
n(y n − g(x̂ i

n, θ̄
i
n)) (13)

P̌ i
n = (I dx −K i

nJg,x̂ in,θ̄
i
n
)P̂

i

n (14)

ii Compute û(θ̄i
n) = N (y n∣g(x̂ i

n, θ̄
i
n),S i

n) and
obtain the normalised weights.

iii Set the filter approximation

p(xn∣θ̄
i
n, y 1∶n)dxn = N (xn∣x̌ i

n, P̌
i
n)dxn.
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(c) Resampling: draw indices j1, . . . , jN from the
multinomial distribution with probabilities
w 1

n , . . . ,w
N
n , then set

θi
n = θ̄

ji
n , x̄ i

n = x̌ ji
n and P̄ i

n = P̌ ji
n (15)

for i = 1, . . . ,N. Hence, p(xn∣θi
n, y 1∶n)dxn

= N (xn∣x̄ i
n, P̄

i
n)dxn.
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Computation of point estimates

• The posterior-mean estimators of θ and x become

θ̂n = ∫ θp(θ∣y 1∶n)dθ ≈ 1

N

N

∑
i=1

θi
n = θ̂

N

n ,

xn = ∫ xp(x ∣y 1∶n,θ)dxn ≈
1

N

N

∑
i=1

x̄ i
n = xN

n .

• The mean square error (MSE) of θ̂n is calculated as

MSEn = ∫ ∥ θ − θ̂n ∥2 p(θ∣y 1∶n)dθ

≈ 1

N

N

∑
i=1

∥ θi
n − θ̂

N

n ∥2
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Preliminaries and notation

For the integral of a function a(θ) w.r.t. a measure α, hereafter we use the
shorthand

(a, α) ∶= ∫ a(θ)α(dθ).

The sequence of posterior probability measures of the unknown parameters,
µn(dθ) ∶= p(θ∣y 1∶n)dθ, n ≥ 1, can be constructed recursively starting from a
prior µ0 as

µn = un ⋆ µn−1 where (f ,un ⋆ α) =
(fun, α)
(un, α)

.

If, instead of the true likelihood un, we use another function ūn ≠ un to update
the posterior probability measure then we obtain the new sequence of measures

µ̄0 = µ0, µ̄n = ūn ⋆ µ̄n−1, n = 1,2, . . .
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Convergence Theorem
A.1. The estimator ûn(θ) is random and can be written as

ûn(θ) = ūn(θ) +mn(θ),

where mn(θ) is a zero-mean random variable with finite variance. Furthermore,
the mean ūn(θ) = E [ûn(θ)] has the form

ūn(θ) = un(θ) + bn(θ),

where bn(θ) is a deterministic and bounded bias function.

Theorem 1
Let the sequence of observations y1∶no be arbitrary but fixed, with no <∞, and
choose an arbitrary function h ∈ B(D). Let µN

n = 1
N ∑

N
i=1 δθi

n
be the random

probability measure in the parameter space generated by the nested filter. If
A.1 holds and under regularity conditions, then

∥(h, µN
n ) − (h, µ̄n)∥p ≤

cn∥h∥∞√
N

, for n = 0,1, . . . ,no ,

where {cn}0≤n≤no is a sequence of constants independent of N. ◻
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Convergence Theorem
A.1. The estimator ûn(θ) is random and can be written as

ûn(θ) = ūn(θ) +mn(θ),

where mn(θ) is a zero-mean random variable with finite variance. Furthermore,
the mean ūn(θ) = E [ûn(θ)] has the form

ūn(θ) = un(θ) + bn(θ),

where bn(θ) is a deterministic and bounded bias function.

Theorem 1
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A Stochastic Lorenz 96 Model
• The model consists of two sets of dynamic variables, x(t) and z(t), that

displays some key features of atmosphere dynamics (including chaotic
behaviour) in a relatively simple model of arbitrary dimension. The
system of differential equations takes the form

ẋ(t) = f 1(x(t), z(t),α)dt + dW

ż(t) = f 2(x(t), z(t),α)dt + dW̄
(16)

• Let us assume there are dx slow variables and L fast variables per slow
variable. The maps, f 1 and f 2 functions, can be written as

f 1 = [f11, . . . , f1dx ]
⊺,

f 2 = [f21, . . . , f2L]⊺,

where

f1j(x , z ,α) = −xj−1(xj−2 − xj+1) − xj + F − HC

B

Lj−1

∑
l=(j−1)L

zl ,

f2l(x , z ,α) = −CBzl+1(zl+2 − zl−1) − Czl +
CF

B
+ HC

B
x⌊ l−1

L
⌋.
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ż(t) = f 2(x(t), z(t),α)dt + dW̄
(16)

• Let us assume there are dx slow variables and L fast variables per slow
variable. The maps, f 1 and f 2 functions, can be written as

f 1 = [f11, . . . , f1dx ]
⊺,

f 2 = [f21, . . . , f2L]⊺,

where

f1j(x , z ,α) = −xj−1(xj−2 − xj+1) − xj + F − HC

B

Lj−1

∑
l=(j−1)L

zl ,

f2l(x , z ,α) = −CBzl+1(zl+2 − zl−1) − Czl +
CF

B
+ HC

B
x⌊ l−1

L
⌋.



Introduction Nested Hybrid Filters Convergence Analysis Numerical results SQMC Conclusions

A Stochastic Lorenz 96 Model

• Applying the a discretization method we obtain a
discrete-time version of the two-scale Lorenz 96 model

x̄k = x̄k−1 + hf̄ 1,σ(x̄k−1, z̄k−1,α,vk), (17)

z̄k = z̄k−1 + hf̄ 2,σ̄(x̄k−1, z̄k−1,α, v̄k) (18)

• We assume that the observations are linear but can only be
collected from this system once every T discrete time steps
and only one out of K slow variables can be observed, having
the form

yn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xK ,nT
x2K ,nT

⋮
xdyK ,nT

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ un, (19)
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A Stochastic Lorenz 96 Model

• We generate both ground-truth values for the slow variables {xn}n≥0 and
synthetic observations, {y n}n≥1. In the algorithm, as a forecast model, we
use the differential equation

ẋj = fj(x ,θ) = −xj−1(xj−2 − xj+1) − xj + F − `(xj , a) (20)

where

• a = [a1, a2]⊺ is a (constant) parameter vector,
• θ = [F , a⊺]⊺ contains all the parameters and
• function `(xj , a) is an ansatz, a polynomial in xj of degree 2,

for the coupling term HC
B ∑

Lj−1
l=(j−1)L z̄l .

• Applying a discretization method we obtain

xk = xk−1 + hf̄ σ(xk−1,θ, v k) (21)
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Simulation setup

f1j(x , z ,α) = −xj−1(xj−2 − xj+1) − xj + F − HC

B

Lj−1

∑
l=(j−1)L

zl ,

f2l(x , z ,α) = −CBzl+1(zl+2 − zl−1) − Czl +
CF

B
+ HC

B
x⌊ l−1

L
⌋. (22)

Integration step h = 10−3

Model parameters F = 8, H = 0.75, C = 10 and B = 15

Fast variables L = 10

Observed variables K = 2

Noise scaling factors σ = h
4
= 0.25 × 10−3 and σo = 4

• The accuracy of the estimation is assessed in terms of empirical MSE per
dimension averaged over several independent simulation runs.

MSEk =
1

dx
∥ x̆k − x̃k ∥2 . (23)
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NPF vs NHF’s

• Dimension dx = 50 and gap between observations of hT = 0.05
continuous-time units.

• N =M = 1400 particles in both layers of NPF.

• N = 200 particles for the first layer of NHFs and M = 50 for the EnKF’s
run.

Algorithm Running time MSE

NPF 6.85 hours 1.872

NHF + EKF 1.196 minutes 1.653

NHF + EnKF 11.674 minutes 0.472

Table: Running times and average MSE (over time and state dimensions)
for the NPF and two NHFs, based on the EKF and the EnKF,
respectively.
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4000-dimensional Experiment
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Sequences of state estimates in x1 and x2 and estimates of the parameters a = [a1, a2]⊺ and F over time in a
4,000-dimensional Lorenz 96 model. Variable x1 is observed (in Gaussian noise), while x2 is unobserved. The
reference values are represented in red lines.
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NHF-EKF vs NHF-EnKF
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as the state dimension dx increase (T = 50 discrete time steps) and as the gap between observations T increases
(dx = 500).
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Simplifications Performance
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Comparison of the original scheme of NHF using both Gaussian filters (EKF
and EnKF) and the inverse simplifications.
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QMC

• We are going to study an alternative to MC, that works similarly but in a
deterministic way.

• The main difference with MC is the use of a low-discrepancy point set
(sub-random or quasi-random) to generate the samples.

• Discrepancy is defined as

D(u(1∶N),A) = sup
A∈A

RRRRRRRRRRR

1

N

N

∑
n=1

11(un ∈ [a,b]) − λs(A)
RRRRRRRRRRR

where we have N vectors un ∈ [0,1)d , λs(A) is the volume of A and A is
the family of measurable subsets of [0,1)d .
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QMC
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QMC vs MC: N = 100 points sampled independently and uniformly in [0,1)2

(left) and QMC sequence in [0,1)2 of the same length (right).
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Discrepancy preserving map

• Φ ∶ Dθ Ð→ [0,1)d is a mapping that is discrepancy preserving, where Dθ
is the support of θ.

• Then, Φ(θ) = (Φ1(θ1), . . . ,Φn(θn)), where Φi ’s are continuous and
strictly monotone, e.g.,

Φi(θi) =
⎡⎢⎢⎢⎢⎣

1 + exp(−
θi − θi

θ̄i − θi

)
⎤⎥⎥⎥⎥⎦

−1

, i = 1, . . . ,d

where θi = µθ1∶N
− 2σθ1∶N

and θ̄i = µθ1∶N
+ 2σθ1∶N

.
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Hilbert curve

• The Hilbert curve is a continuous fractal map H ∶ [0,1)Ð→ [0,1)d .

• It admits a pseudo-inverse h ∶ [0,1)d Ð→ [0,1), which is used in SQMC
to sort the samples θ̄i .
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Hilbert curves of order m = 4,8,16.
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Sequential QMC
Algorithm

1. Initialisation

1.1 Generate a QMC point set v (i)0 in (0,1]d and compute θ̄
(i)
0

from κN(dθ,v (i)0 ).

1.2 Compute the normalised weights w i
0 ∝ û0(θ̄

i
0).

2. Recursive step

2.1 Generate a QMC point set V (i)n = [r (i)n ,v (i)n ] in (0,1]d+1.
2.2 Hilbert sort: find permutation σt−1 such that

h ○ φ(θσt−1(1)
n ) ≤ . . . ≤ h ○ φ(θσt−1(N)

n ) and reorder the weights

w
σt−1(i)
n .

2.3 Find permutation τ such that r
τ(1)
t ≤ . . . ≤ r

τ(N)
t , and obtain

the set {θN
i=1} applying the inversion method. Compute θ̄

(i)
n+1

from κN(dθ∣θi
n,v

(i)
n ).

2.4 Compute ûn(θ̄
i
n) and let w i

n ∝ ûn(θ̄
i
n) be the normalised

weight of θ̄
i
n.
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Lorenz 63 model

• In this model the state-space consists in three variables (x , y and z),
each of them with its respective SDE.

f x(x , y , z ,S) = −S(x − y),
fy(x , y , z ,R) = Rx − y − xz ,
fz(x , y , z ,B) = xy −Bz ,

• In order to do some experiments, they are discretized and the parameters
are cosidered known (S = 10, R = 28 and Q = 8

3
).
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SQMC vs SMC. Results obtained over 1000 simulation runs of a Lorenz 63
model.
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Conclusions

• We have introduced a recursive methodology to estimate the static
parameters and the dynamic variables.

• The use of Gaussian filters is investigated as they admit fast
implementations that can be well suited to high dimensional systems and
two of them are simulated.

• Simplifications in the NHF-EKF and NHF-EnKF allowed the
implementation of high dimensional systems.

• We have proved, under very general assumptions, that the proposed
method converges (with optimal Monte Carlo rates) to a possibly biased
version of the posterior distribution of the parameters.
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Future work

• Apply SQMC and other filters in the first layer of the algorithm in order
to improve its performance.

• Use this algorithms with real data thanks to our collaboration with
MeteoGalicia.
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