Introduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusions
00	0000	00	000 0 0000	0000	0

A nested filtering scheme for Bayesian model inference and tracking

Sara Pérez Vieites

Department of Signal Theory & Communications, Universidad Carlos III de Madrid. spvieites@tsc.uc3m.es

Supervisor: Joaquín Míguez

December 5th, 2017

Introd	uction
00	

Convergence Analysis

 Numerical results
 SQMC
 Con

 000
 0000
 0
 0

 0
 000
 0
 0
 0

 0
 000
 0
 0
 0
 0

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Index

Introduction

State of the art and contributions

Nested Hybrid Filters

Dynamical Model Nested Filters

Convergence Analysis

Convergence theorem and analysis of the divergence between μ and $\bar{\mu}$

Numerical results

Lorenz 96 Model Simulation setup Results

SQMC

Getting into some details Sequential Quasi-Monte Carlo

Conclusions

Concluding remarks Future work

Introd	uction
00	

Convergence Analysis

Numerical results SQM 000 0000 0000

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conclusions 0

Index

Introduction

State of the art and contributions

Nested Hybrid Filters

Dynamical Mode Nested Filters

Convergence Analysis

Convergence theorem and analysis of the divergence between μ and $\bar{\mu}$

Numerical results

Lorenz 96 Model Simulation setup Results

SQMC

Getting into some details Sequential Quasi-Monte Carlo

Conclusions

Concluding remarks Future work

Introduction	
•0	

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

State-of-the-art Methods

- Very-large-scale stochastic dynamic models of real world phenomena, where we estimate
 - dynamic variables and
 - unknown static parameters.
 - \Rightarrow Conventional prediction and estimation methods are not well suited.
- State-of-the-art algorithms:
 - 1. Bayesian methods (SMC² [Chopin et al, 2012], pMCMC [Andrieu et al, 2010])
 - approximate the posterior distribution of the unknown variables and parameters, but
 - they are non-recursive.
 - 2. Maximum likelihood estimators
 - provide point estimates only
 - recursive, but no measure of uncertainty

Introduction	
0.	

Convergence Analysis

Numerical results	SQN
000	000
0	000
0000	

Conclusions 0

Contributions

- A purely recursive generic nested filtering scheme is introduced.
 - 1. The nested particle filter [Crisan and Miguez, 2016] is a particular case, which infers the posterior distribution of variables and parameters
 - using a bank of particle filters.
 - it is computationally costly.
 - 2. Therefore, a new class of nested hybrid filters is proposed, using
 - a bank of Gaussian filters such as EKF or EnKF, and
 - reducing running times without significant changes in accuracy.
- A stochastic two-scale Lorenz 96 model is used in computer simulations.
 - \Rightarrow It is a benchmark system for meteorology.

Nested Hybrid Filters

Convergence Analysis

Numerical results SQ 000 00 0000 00

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conclusions

Index

Introduction

State of the art and contributions

Nested Hybrid Filters

Dynamical Mode Nested Filters

Convergence Analysis

Convergence theorem and analysis of the divergence between μ and $\bar{\mu}$

Numerical results

Lorenz 96 Model Simulation setup Results

SQMC

Getting into some details Sequential Quasi-Monte Carlo

Conclusions

Concluding remarks Future work

Nested Hybrid Filters	Convergence Analysis	Numerical results 000 0 0000	SQMC 0000 000	Conclusions O O
-----------------------	----------------------	---------------------------------------	---------------------	-----------------------

State-space model

• The dynamical behaviour of the system state can be modeled by sets of nonlinear stochastic differential equations (SDEs), like:

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, \boldsymbol{\theta}) dt + dW \tag{1}$$

where $f(\tilde{x})$ is a nonlinear function parametrized by θ and dW is a brownian process.

uction	Nested Hybrid Filters	Convergence Analysis
	0000	00

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

State-space model

• The value of the system state can be approximated applying any sort of discretization method as

$$\tilde{\mathbf{x}}_{k} = \tilde{\mathbf{x}}_{k-1} + h\bar{\mathbf{f}}_{\sigma}(\tilde{\mathbf{x}}_{k-1}, \boldsymbol{\theta}, \mathbf{v}_{k})$$
(2)

where

- $\bar{f}_{\sigma}(\tilde{x}_{k-1}, \theta, \mathbf{v}_k)$ is an estimate of the vector of time derivatives
- h > 0 is a time-discretisation step with k = 0, 1, ... and
- $\sigma \ge 0$ is a parameter that controls the power of the perturbations, that needs to be small enough to preserve the underlying dynamics of the system

troduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusions
0	0000	00	000	0000	0
	00000000		0000	000	0

Observations

States, \tilde{x}_{k} , and unknown parameters, θ , are estimated from a sequence of observation vectors, modelled as

$$\tilde{\boldsymbol{y}}_{kT} = \boldsymbol{g}_{\sigma_o}(\tilde{\boldsymbol{x}}_{kT}, \boldsymbol{\theta}, \tilde{\boldsymbol{u}}_{kT}), \quad k = 1, 2, \dots, \quad T \ge 1,$$
(3)

where

- $\boldsymbol{g}_{\sigma_o}: \mathbb{R}^{d_x} \to \mathbb{R}^{d_y}$, being the observation vectors of dimension $d_y \leq d_x$,
- T is the discrete observation period and
- *ũ_k* is a sequence of zero-mean independent vectors representing observational noise, where power is scaled by a known factor σ_o > 0.

Intro	du	cti	on
00			

Convergence Analysis

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

Dynamical Model

 As we only consider observations every T discrete time steps, it is convenient to rewrite the dynamic model in the same time scale. We work with the pair of random sequences x_n := x̃_{nT} and y_n := ỹ_{nT}, as

$$\boldsymbol{y}_n = \boldsymbol{g}_{\sigma_o}(\boldsymbol{x}_n, \boldsymbol{\theta}, \boldsymbol{u}_n), \tag{4}$$

$$\boldsymbol{x}_{n} = \boldsymbol{\bar{F}}_{T,\sigma}(\boldsymbol{x}_{n-1},\boldsymbol{\theta},\boldsymbol{v}_{n}), \quad n = 1, 2, \dots$$
 (5)

• Here \overline{F} represents the transformation from $x_{n-1} := \widetilde{x}_{(n-1)T}$ to $x_n := \widetilde{x}_{nT}$ in T steps as

$$\tilde{\mathbf{x}}_{(n-1)T} = \mathbf{x}_{n-1}$$

$$\tilde{\mathbf{x}}_{(n-1)T+1} = \tilde{\mathbf{x}}_{(n-1)T} + \overline{\mathbf{f}}_{\sigma} (\tilde{\mathbf{x}}_{(n-1)T}, \boldsymbol{\theta}, \tilde{\mathbf{v}}_{(n-1)T+1})$$

$$\vdots \qquad (6)$$

$$\tilde{\mathbf{x}}_{nT-1} = \tilde{\mathbf{x}}_{nT-2} + \overline{\mathbf{f}}_{\sigma} (\tilde{\mathbf{x}}_{nT-2}, \boldsymbol{\theta}, \tilde{\mathbf{v}}_{nT-1})$$

$$\mathbf{x}_{n} = \tilde{\mathbf{x}}_{nT-1} + \overline{\mathbf{f}}_{\sigma} (\tilde{\mathbf{x}}_{nT-1}, \boldsymbol{\theta}, \tilde{\mathbf{v}}_{nT})$$

Introduction 00	Nested Hybrid Filters	Convergence Analysis 00	Numerical results 000 0 0000	SQMC 0000 000	Conclusions O O

Objective

- The aim of this work is to estimate the parameters θ and its posterior distribution $p(\theta|\mathbf{y})$.
- We combine Monte Carlo with other auxiliary filters for that purpose.

(ロ)、(型)、(E)、(E)、 E) の(の)

Intro	du	cti	on
00			

Convergence Analysis

Numerical results	SQMC	Conclusion
000	0000	0
0	000	0
0000		

Nested filtering

- The following (naive) algorithm yields a weighted Monte Carlo approximation of p(θ|y_{1:n})dθ at each time n:
 - 1. Draw N i.i.d. samples $\boldsymbol{\theta}_n^i$, i = 1, 2, ..., N, from $p(\boldsymbol{\theta}|\boldsymbol{y}_{1:n-1})$.
 - 2. Compute importance weights,

$$\tilde{w}_n^i = p(\boldsymbol{y}_n | \boldsymbol{\theta}_n^i, \boldsymbol{y}_{1:n-1}), \quad i = 1, \dots, N,$$
(7)

and normalise them. We obtain the IS estimate $p(\theta|\mathbf{y}_{1:n})d\theta = \sum_{i=1}^{N} w_n^i \delta_{\theta_n^i}(d\theta).$

- This weighted Monte Carlo approximation is not practical because
 - it is not possible to draw from $p(\theta|y_{1:n})$, at least exactly, and
 - the likelihood u_n(θⁱ_n) := p(y_n|θⁱ_n, y_{1:n-1}) cannot be evaluated exactly either.
- We can obtain an estimate of $u_n(\theta)$ if we approximate first the predictive measure $p(x_n|\theta, y_{1:n-1})dx_n$ since it can be rewritten as

$$u_{n}(\theta) = \int p(y_{n}|x_{n},\theta)p(x_{n}|\theta,y_{1:n-1})d(x_{n})$$

$$(8)$$

$$(8)$$

Intro	du	cti	on
00			

Convergence Analysis

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

Nested filtering

- The following (naive) algorithm yields a weighted Monte Carlo approximation of p(θ|y_{1:n})dθ at each time n:
 - 1. Draw N i.i.d. samples $\boldsymbol{\theta}_n^i$, i = 1, 2, ..., N, from $p(\boldsymbol{\theta}|\boldsymbol{y}_{1:n-1})$.
 - 2. Compute importance weights,

$$\tilde{w}_n^i = \boldsymbol{p}(\boldsymbol{y}_n | \boldsymbol{\theta}_n^i, \boldsymbol{y}_{1:n-1}), \quad i = 1, \dots, N,$$
(7)

and normalise them. We obtain the IS estimate $p(\theta|\mathbf{y}_{1:n})d\theta = \sum_{i=1}^{N} w_n^i \delta_{\theta_n^i}(d\theta).$

• This weighted Monte Carlo approximation is not practical because

- it is not possible to draw from $p(\theta|\mathbf{y}_{1:n})$, at least exactly, and
- the likelihood $u_n(\boldsymbol{\theta}_n^i) \coloneqq p(\boldsymbol{y}_n | \boldsymbol{\theta}_n^i, \boldsymbol{y}_{1:n-1})$ cannot be evaluated exactly either.
- We can obtain an estimate of $u_n(\theta)$ if we approximate first the predictive measure $p(x_n|\theta, y_{1:n-1})dx_n$ since it can be rewritten as

$$u_n(\theta) = \int p(\mathbf{y}_n | \mathbf{x}_n, \theta) p(\mathbf{x}_n | \theta, \mathbf{y}_{1:n-1}) d(\mathbf{x}_n)$$
(8)

Intro	du	cti	on
00			

Convergence Analysis

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

Nested filtering

- The following (naive) algorithm yields a weighted Monte Carlo approximation of p(θ|y_{1:n})dθ at each time n:
 - 1. Draw N i.i.d. samples $\boldsymbol{\theta}_n^i$, i = 1, 2, ..., N, from $p(\boldsymbol{\theta}|\boldsymbol{y}_{1:n-1})$.
 - 2. Compute importance weights,

$$\tilde{w}_n^i = \boldsymbol{p}(\boldsymbol{y}_n | \boldsymbol{\theta}_n^i, \boldsymbol{y}_{1:n-1}), \quad i = 1, \dots, N,$$
(7)

and normalise them. We obtain the IS estimate $p(\theta|\mathbf{y}_{1:n})d\theta = \sum_{i=1}^{N} w_n^i \delta_{\theta_n^i}(d\theta).$

- This weighted Monte Carlo approximation is not practical because
 - it is not possible to draw from $p(\theta|\mathbf{y}_{1:n})$, at least exactly, and
 - the likelihood $u_n(\boldsymbol{\theta}_n^i) \coloneqq p(\boldsymbol{y}_n | \boldsymbol{\theta}_n^i, \boldsymbol{y}_{1:n-1})$ cannot be evaluated exactly either.
- We can obtain an estimate of $u_n(\theta)$ if we approximate first the predictive measure $p(\mathbf{x}_n|\theta, \mathbf{y}_{1:n-1})d\mathbf{x}_n$ since it can be rewritten as

$$u_n(\theta) = \int p(\mathbf{y}_n | \mathbf{x}_n, \theta) p(\mathbf{x}_n | \theta, \mathbf{y}_{1:n-1}) d(\mathbf{x}_n)$$
(8)

Nested Hybrid Filters

Convergence Analysis

Numerical results	SQMC	Conclusion	
000	0000	0	
0	000	0	
0000			

General Nested Filter

Algorithm

1. Initialisation

Draw $\theta_0^{(i)}$, i = 1, ..., N, *i.i.d.* samples from $p(\theta)d\theta$.

2. Recursive step

.1 For i = 1, ..., N: 2.1.1 Draw $\overline{\theta}_n^{(i)}$ from $\kappa_N(d\theta|\theta_{n-1}^i)$. 2.1.2 Approximate $p(x_n|\overline{\theta}_n^i, y_{1:n-1})dx_n$. 2.1.3 Use $p(x_n|\overline{\theta}_n^i, y_{1:n-1})dx_n$ to compute $\hat{u}_n(\overline{\theta}_n^i)$ and let $w_n^i \propto \hat{u}_n(\overline{\theta}_n^i)$ be the normalised weight of $\overline{\theta}_n^i$.

2.2 Resample to obtain the set $\{\theta_{i=1}^{N}\}$ and the approximation $\hat{p}(d\theta|\mathbf{y}_{1:n}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta_{i}^{i}}(d\theta).$

Nested Hybrid Filters

Convergence Analysis

Numerical results	SQMC	Conclusior	
000	0000	0	
0	000	0	
0000			

General Nested Filter

Algorithm

1. Initialisation

Draw $\theta_0^{(i)}$, i = 1, ..., N, *i.i.d.* samples from $p(\theta)d\theta$.

2. Recursive step

2.1 For i = 1, ..., N: 2.1.1 Draw $\overline{\theta}_n^{(i)}$ from $\kappa_N(d\theta|\theta_{n-1}^i)$. 2.1.2 Approximate $p(\mathbf{x}_n|\overline{\theta}_n^i, \mathbf{y}_{1:n-1})d\mathbf{x}_n$ 2.1.3 Use $p(\mathbf{x}_n|\overline{\theta}_n^i, \mathbf{y}_{1:n-1})d\mathbf{x}_n$ to compute $\hat{u}_n(\overline{\theta}_n^i)$ and let

 $w_n^i \propto \hat{u}_n(\bar{\theta}_n^i)$ be the normalised weight of $\bar{\theta}_n^i$.

2.2 Resample to obtain the set $\{\theta_{i=1}^{N}\}$ and the approximation $\hat{p}(d\theta|\mathbf{y}_{1:n}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta_{i}}(d\theta).$

Nested Hybrid Filters

Convergence Analysis

Numerical results	SQMC	Conclusion	
000	0000	0	
0	000	0	
0000			

General Nested Filter

Algorithm

1. Initialisation

Draw $\theta_0^{(i)}$, i = 1, ..., N, *i.i.d.* samples from $p(\theta)d\theta$.

2. Recursive step

2.1 For i = 1, ..., N: 2.1.1 Draw $\overline{\theta}_n^{(i)}$ from $\kappa_N(d\theta|\theta_{n-1}^i)$. 2.1.2 Approximate $p(\mathbf{x}_n|\overline{\theta}_n^i, \mathbf{y}_{1:n-1})d\mathbf{x}_n$. 2.1.3 Use $p(\mathbf{x}_n|\overline{\theta}_n^i, \mathbf{y}_{1:n-1})d\mathbf{x}_n$ to compute $\hat{u}_n(\overline{\theta}_n^i)$ and let $w_n^i \propto \hat{u}_n(\overline{\theta}_n^i)$ be the normalised weight of $\overline{\theta}_n^i$.

2.2 Resample to obtain the set $\{\theta_{i=1}^{N}\}$ and the approximation $\hat{p}(d\theta|\mathbf{y}_{1:n}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta_{i}^{i}}(d\theta).$

Numerical results	SQMC	Conclusion	
000	0000	0	
0	000	0	
0000			

General Nested Filter

Algorithm

1. Initialisation

Draw $\theta_{0}^{(i)}$, i = 1, ..., N, *i.i.d.* samples from $p(\theta)d\theta$.

2. Recursive step

$$2.1 \quad For \ i = 1, \dots, N:$$

$$2.1.1 \quad Draw \ \bar{\theta}_n^{(i)} \quad from \ \kappa_N(d\theta|\theta_{n-1}^i).$$

$$2.1.2 \quad Approximate \ p(\mathbf{x}_n|\bar{\theta}_n^i, \mathbf{y}_{1:n-1})d\mathbf{x}_n.$$

$$2.1.3 \quad Use \ p(\mathbf{x}_n|\bar{\theta}_n^i, \mathbf{y}_{1:n-1})d\mathbf{x}_n \ to \\ compute \ \hat{u}_n(\bar{\theta}_n^i) \quad and \ let \\ w_n^i \propto \hat{u}_n(\bar{\theta}_n^i) \quad be \ the \ normalised \\ weight \ of \ \bar{\theta}_n^i.$$

 $\hat{p}(d\theta|\mathbf{y}_{1:n}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\theta_{i}^{i}}(d\theta).$

Sampling $\bar{\theta}_n^{(i)}$ Predictio $\hat{p}(\mathbf{x}_n | \bar{\boldsymbol{\theta}}_n^i, \mathbf{y}_{1:n-1}) d$ Update $\hat{p}(\mathbf{x}_n | \bar{\boldsymbol{\theta}}_n^i, \mathbf{y}_{1:n}) dx$

Introd	uct	ion
00		

Convergence Analysis

Numerical results	SQMC	Conclusior
000	0000	0
0	000	0
0000		

General Nested Filter

Algorithm

1. Initialisation

Draw $\theta_0^{(i)}$, i = 1, ..., N, *i.i.d.* samples from $p(\theta)d\theta$.

2. Recursive step

Sampling $\overline{\theta}_{n}^{(i)}$ $\downarrow^{\text{Prediction}}$ $\hat{p}(\boldsymbol{x}_{n}|\overline{\theta}_{n}^{i}, \boldsymbol{y}_{1:n-1})d\boldsymbol{x}_{n} \longrightarrow \hat{u}_{n}(\overline{\theta}_{n}^{i})$ $\downarrow^{\text{Update}}$ $\hat{p}(\boldsymbol{x}_{n}|\overline{\theta}_{n}^{i}, \boldsymbol{y}_{1:n})d\boldsymbol{x}_{n}$ $\downarrow^{\text{Resampling}}$ $\hat{p}(\boldsymbol{x}_{n}|\overline{\theta}_{n}^{i}, \boldsymbol{y}_{1:n})d\boldsymbol{x}_{n}$ and $\hat{p}(d\theta|\boldsymbol{y})$

2.1 For i = 1, ..., N: 2.1.1 Draw $\overline{\theta}_n^{(i)}$ from $\kappa_N(d\theta|\theta_{n-1}^i)$. 2.1.2 Approximate $p(\mathbf{x}_n|\overline{\theta}_n^i, \mathbf{y}_{1:n-1})d\mathbf{x}_n$. 2.1.3 Use $p(\mathbf{x}_n|\overline{\theta}_n^i, \mathbf{y}_{1:n-1})d\mathbf{x}_n$ to compute $\hat{u}_n(\overline{\theta}_n^i)$ and let $w_n^i \propto \hat{u}_n(\overline{\theta}_n^i)$ be the normalised weight of $\overline{\theta}_n^i$.

2.2 Resample to obtain the set $\{\boldsymbol{\theta}_{i=1}^{N}\}$ and the approximation $\hat{p}(d\boldsymbol{\theta}|\boldsymbol{y}_{1:n}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\boldsymbol{\theta}_{i}}(d\boldsymbol{\theta}).$

Nested Hybrid Filters

Convergence Analysis

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

NHF via EKF

Let us assume $p(\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0|\bar{\mathbf{x}}_0, \bar{\mathbf{P}}_0)$, $\mathbf{v}_k \sim \mathcal{N}(\mathbf{v}_k|\mathbf{0}, \mathbf{Q})$ and $\mathbf{u}_k \sim \mathcal{N}(\mathbf{u}_k|\mathbf{0}, \mathbf{R})$. Functions $\bar{\mathbf{f}}$ in Eq. (2) and \mathbf{g} in Eq. (4) are nonlinear and differentiable, with $J_{\bar{f},x,\theta}$ and $J_{g,x,\theta}$ denoting their respective Jacobian matrices evaluated at the point \mathbf{x} and θ .

Algorithm

 $\begin{array}{c} \bigvee_{\text{Prediction}} \\ \hat{\rho}(\boldsymbol{x}_n | \bar{\boldsymbol{\theta}}_n^i, \boldsymbol{y}_{1:n-1}) d\boldsymbol{x}_n \longrightarrow \hat{u}_n(\bar{\boldsymbol{\theta}}_n^i) \\ & \downarrow_{\text{Update}} \\ \hat{\rho}(\boldsymbol{x}_n | \bar{\boldsymbol{\theta}}_n^i, \boldsymbol{y}_{1:n}) d\boldsymbol{x}_n \\ & \downarrow_{\text{Resampling}} \\ \hat{\rho}(\boldsymbol{x}_n | \boldsymbol{\theta}_n^i, \boldsymbol{y}_{1:n}) d\boldsymbol{x}_n \text{ and } \hat{\rho}(d\boldsymbol{\theta} | \boldsymbol{y}) \end{array}$

Sampling $\bar{\theta}_n^{(i)}$

I. Initialisation: draw N i.i.d. particles $\theta_0^i \sim p(\theta) d\theta, i = 1, ..., N$. Let $\bar{\mathbf{x}}_0^i = \bar{\mathbf{x}}_0$ and $\bar{\mathbf{P}}_0^i = \mathbf{P}_0$ for every *i*.

2. Recursive step: at time n, we have available $p(\theta|\mathbf{y}_{1:n-1})d\theta \approx \frac{1}{N}\sum_{i=1}^{N}\delta_{\bar{\theta}_{n-1}^{i}}(d\theta)$ and, for each $i = 1, \dots, N$, $p(\mathbf{x}_{n}|\theta_{n-1}^{i}, \mathbf{y}_{1:n-1})d\mathbf{x}_{n-1} \approx \mathcal{N}(\mathbf{x}_{n-1}|\bar{\mathbf{x}}_{n-1}^{i}, \bar{\boldsymbol{P}}_{n-1}^{i})d\mathbf{x}_{n}.$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Sampling $\bar{\theta}_n^{(i)}$

Nested Hybrid Filters

Convergence Analysis

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

NHF via EKF

Let us assume $p(\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0|\bar{\mathbf{x}}_0, \bar{\mathbf{P}}_0)$, $\mathbf{v}_k \sim \mathcal{N}(\mathbf{v}_k|\mathbf{0}, \mathbf{Q})$ and $\mathbf{u}_k \sim \mathcal{N}(\mathbf{u}_k|\mathbf{0}, \mathbf{R})$. Functions $\bar{\mathbf{f}}$ in Eq. (2) and \mathbf{g} in Eq. (4) are nonlinear and differentiable, with $J_{\bar{f},x,\theta}$ and $J_{g,x,\theta}$ denoting their respective Jacobian matrices evaluated at the point \mathbf{x} and θ .

Algorithm

 $\begin{array}{c} & \bigvee_{\mathsf{Prediction}} & \mathsf{F} \\ \hat{p}(\mathbf{x}_n | \bar{\boldsymbol{\theta}}_n^i, \mathbf{y}_{1:n-1}) d\mathbf{x}_n & \longrightarrow \hat{u}_n(\bar{\boldsymbol{\theta}}_n^i) \\ & & \bigvee_{\mathsf{Update}} \\ \hat{p}(\mathbf{x}_n | \bar{\boldsymbol{\theta}}_n^i, \mathbf{y}_{1:n}) d\mathbf{x}_n \\ & & \bigvee_{\mathsf{Resampling}} \\ \hat{p}(\mathbf{x}_n | \boldsymbol{\theta}_n^i, \mathbf{y}_{1:n}) d\mathbf{x}_n \text{ and } \hat{p}(d\boldsymbol{\theta} | \mathbf{y}) \end{array}$

- 1. Initialisation: draw N i.i.d. particles $\theta_0^i \sim p(\theta) d\theta, i = 1, ..., N$. Let $\bar{\mathbf{x}}_0^i = \bar{\mathbf{x}}_0$ and $\bar{\mathbf{P}}_0^i = \mathbf{P}_0$ for every *i*.
- 2. Recursive step: at time n, we have available $p(\theta|\mathbf{y}_{1:n-1})d\theta \approx \frac{1}{N}\sum_{i=1}^{N} \delta_{\bar{\theta}_{n-1}^{i}}(d\theta)$ and, for each i = 1, ..., N, $p(\mathbf{x}_{n}|\theta_{n-1}^{i}, \mathbf{y}_{1:n-1})d\mathbf{x}_{n-1} \approx \mathcal{N}(\mathbf{x}_{n-1}|\bar{\mathbf{x}}_{n-1}^{i}, \bar{\boldsymbol{P}}_{n-1}^{i})d\mathbf{x}_{n}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusions
00	0000	00	000 0 0000	0000	0

Sampling
$$\overline{\theta}_{n}^{(i)}$$

 \downarrow Prediction
 $\hat{\rho}(\boldsymbol{x}_{n}|\overline{\theta}_{n}^{i}, \boldsymbol{y}_{1:n-1})d\boldsymbol{x}_{n} \longrightarrow \hat{u}_{n}(\overline{\theta}_{n}^{i})$
 \downarrow Update
 $\hat{\rho}(\boldsymbol{x}_{n}|\overline{\theta}_{n}^{i}, \boldsymbol{y}_{1:n})d\boldsymbol{x}_{n}$
 \downarrow Resampling
 $\hat{\rho}(\boldsymbol{x}_{n}|\theta_{n}^{i}, \boldsymbol{y}_{1:n})d\boldsymbol{x}_{n}$ and $\hat{\rho}(d\theta|\boldsymbol{y})$

$$i \quad Draw \quad \bar{\boldsymbol{\theta}}_{n}^{i} \sim \kappa_{N} (\boldsymbol{d}\boldsymbol{\theta}|\boldsymbol{\theta}_{n-1}^{i}), \ i = 1, \dots, N.$$

$$i \quad Let \quad \check{\mathbf{x}}_{0}^{i} = \bar{\boldsymbol{x}}_{n-1}^{i} \ and \quad \check{\boldsymbol{P}}_{0}^{i} = \bar{\boldsymbol{P}}_{n-1}^{i},$$

$$i = 1, \dots, N. \quad Then, \ for \ each \ i \ and$$

$$k = 1, \dots, T \ compute$$

$$\check{\mathbf{x}}_{k}^{i} = \bar{\boldsymbol{f}}_{\sigma} (\check{\mathbf{x}}_{k-1}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}, \mathbf{0}), \qquad (9)$$

$$\breve{\boldsymbol{P}}_{k}^{i} = \boldsymbol{J}_{\bar{\boldsymbol{f}}, \breve{\boldsymbol{x}}_{k-1}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}} \breve{\boldsymbol{P}}_{k-1}^{i} \boldsymbol{J}_{\bar{\boldsymbol{f}}, \breve{\boldsymbol{x}}_{k-1}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}}^{\dagger} + \sigma^{2} \boldsymbol{Q} \quad (10)$$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶

ж

iii Set
$$p(x_n | \bar{\theta}_n^i, y_{1:n-1}) dx_n = \mathcal{N}(x_n | \hat{x}_n^i, \hat{P}_n^i) dx_n$$

where $\hat{x}_n^i = \check{x}_1^i$ and $\hat{P}_n^i = \hat{P}_1^i$.

Introduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusions
00	0000	00	000 0 0000	0000	0

(b) Update:

i For $i = 1, \ldots, N$, compute

Sampling
$$\overline{\theta}_{n}^{(i)}$$

 \downarrow Prediction
 $\hat{p}(\mathbf{x}_{n}|\overline{\theta}_{n}^{i}, \mathbf{y}_{1:n-1})d\mathbf{x}_{n} \longrightarrow \hat{u}_{n}(\overline{\theta}_{n}^{i})$
 \downarrow Update
 $\hat{p}(\mathbf{x}_{n}|\overline{\theta}_{n}^{i}, \mathbf{y}_{1:n})d\mathbf{x}_{n}$
 \downarrow Resampling
 $\hat{p}(\mathbf{x}_{n}|\overline{\theta}_{n}^{i}, \mathbf{y}_{1:n})d\mathbf{x}_{n}$ and $\hat{p}(d\theta|\mathbf{y})$

$$\boldsymbol{S}_{n}^{i} = \boldsymbol{J}_{\boldsymbol{g}, \hat{\boldsymbol{x}}_{n}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}} \hat{\boldsymbol{P}}_{n}^{i} \boldsymbol{J}_{\boldsymbol{g}, \hat{\boldsymbol{x}}_{n}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}}^{\mathsf{T}} + \sigma_{o}^{2} \boldsymbol{R} \qquad (11)$$

$$\boldsymbol{K}_{n}^{i} = \hat{\boldsymbol{P}}_{n}^{i} \boldsymbol{J}_{\boldsymbol{g}, \hat{\boldsymbol{x}}_{n}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}}^{\mathsf{T}} \left(\boldsymbol{S}_{n}^{i}\right)^{-1}$$
(12)

$$\check{\boldsymbol{x}}_{n}^{i} = \hat{\boldsymbol{x}}_{n}^{i} + \boldsymbol{K}_{n}^{i}(\boldsymbol{y}_{n} - \boldsymbol{g}(\hat{\boldsymbol{x}}_{n}^{i}, \boldsymbol{\bar{\theta}}_{n}^{i}))$$
(13)

$$\check{\boldsymbol{P}}_{n}^{i} = (\boldsymbol{I}_{d_{x}} - \boldsymbol{\kappa}_{n}^{i} \boldsymbol{J}_{\boldsymbol{g}, \hat{\boldsymbol{x}}_{n}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}}) \hat{\boldsymbol{P}}_{n}^{i}$$
(14)

- ロ ト - 4 回 ト - 4 □ - 4

- ii Compute $\hat{u}(\bar{\theta}_n^i) = \mathcal{N}(\mathbf{y}_n | \mathbf{g}(\hat{\mathbf{x}}_n^i, \bar{\theta}_n^i), \mathbf{S}_n^i)$ and obtain the normalised weights.
- iii Set the filter approximation $p(\mathbf{x}_n | \bar{\boldsymbol{\theta}}_n^i, \mathbf{y}_{1:n}) d\mathbf{x}_n = \mathcal{N}(\mathbf{x}_n | \check{\mathbf{x}}_n^i, \check{\boldsymbol{P}}_n^i) d\mathbf{x}_n.$

Introduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusions
00	0000	00	000 0 0000	0000	0

(b) Update:

i For $i = 1, \ldots, N$, compute

Sampling
$$\overline{\theta}_{n}^{(i)}$$

 \downarrow Prediction
 $\hat{p}(\mathbf{x}_{n}|\overline{\theta}_{n}^{i}, \mathbf{y}_{1:n-1}) d\mathbf{x}_{n} \longrightarrow \hat{u}_{n}(\overline{\theta}_{n}^{i})$
 \downarrow Update
 $\hat{p}(\mathbf{x}_{n}|\overline{\theta}_{n}^{i}, \mathbf{y}_{1:n}) d\mathbf{x}_{n}$
 \downarrow Resampling
 $\hat{p}(\mathbf{x}_{n}|\theta_{n}^{i}, \mathbf{y}_{1:n}) d\mathbf{x}_{n}$ and $\hat{p}(d\theta|\mathbf{y})$

$$\boldsymbol{S}_{n}^{i} = \boldsymbol{J}_{\boldsymbol{g}, \hat{\boldsymbol{x}}_{n}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}} \hat{\boldsymbol{P}}_{n}^{i} \boldsymbol{J}_{\boldsymbol{g}, \hat{\boldsymbol{x}}_{n}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}}^{\mathsf{T}} + \sigma_{o}^{2} \boldsymbol{R} \qquad (11)$$

$$\boldsymbol{K}_{n}^{i} = \hat{\boldsymbol{P}}_{n}^{i} \boldsymbol{J}_{\boldsymbol{g}, \hat{\boldsymbol{x}}_{n}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}}^{\mathsf{T}} \left(\boldsymbol{S}_{n}^{i} \right)^{-1}$$
(12)

$$\check{\boldsymbol{x}}_{n}^{i} = \hat{\boldsymbol{x}}_{n}^{i} + \boldsymbol{K}_{n}^{i}(\boldsymbol{y}_{n} - \boldsymbol{g}(\hat{\boldsymbol{x}}_{n}^{i}, \boldsymbol{\bar{\theta}}_{n}^{i}))$$
(13)

$$\check{\boldsymbol{P}}_{n}^{i} = (\boldsymbol{I}_{d_{x}} - \boldsymbol{K}_{n}^{i} \boldsymbol{J}_{\boldsymbol{g}, \hat{\boldsymbol{x}}_{n}^{i}, \bar{\boldsymbol{\theta}}_{n}^{i}}) \hat{\boldsymbol{P}}_{n}^{i}$$
(14)

- ロ ト - 4 回 ト - 4 □ - 4

- ii Compute $\hat{u}(\bar{\theta}_n^i) = \mathcal{N}(\mathbf{y}_n | \mathbf{g}(\hat{\mathbf{x}}_n^i, \bar{\theta}_n^i), \mathbf{S}_n^i)$ and obtain the normalised weights.
- iii Set the filter approximation $p(\mathbf{x}_n | \bar{\boldsymbol{\theta}}_n^i, \mathbf{y}_{1:n}) d\mathbf{x}_n = \mathcal{N}(\mathbf{x}_n | \check{\mathbf{x}}_n^i, \check{\boldsymbol{P}}_n^i) d\mathbf{x}_n.$

Introduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusions
00	00000000	00	000 0 0000	0000	0

Sampling
$$\overline{\theta}_{n}^{(i)}$$

 \downarrow Prediction
 $\hat{p}(\mathbf{x}_{n}|\overline{\theta}_{n}^{i},\mathbf{y}_{1:n-1})d\mathbf{x}_{n} \longrightarrow \hat{u}_{n}(\overline{\theta}_{n}^{i})$
 \downarrow Update
 $\hat{p}(\mathbf{x}_{n}|\overline{\theta}_{n}^{i},\mathbf{y}_{1:n})d\mathbf{x}_{n}$
 \downarrow Resampling
 $\hat{p}(\mathbf{x}_{n}|\overline{\theta}_{n}^{i},\mathbf{y}_{1:n})d\mathbf{x}_{n}$ and $\hat{p}(d\theta|\mathbf{y})$

(c) Resampling: draw indices j₁,..., j_N from the multinomial distribution with probabilities w¹_n,..., w^N_n, then set

$$\boldsymbol{\theta}_{n}^{i} = \boldsymbol{\bar{\theta}}_{n}^{j_{i}}, \quad \boldsymbol{\bar{x}}_{n}^{i} = \boldsymbol{\check{x}}_{n}^{j_{i}} \quad and \quad \boldsymbol{\bar{P}}_{n}^{i} = \boldsymbol{\check{P}}_{n}^{j_{i}} \quad (15)$$
for $i = 1, \dots, N$. Hence, $p(\boldsymbol{x}_{n}|\boldsymbol{\theta}_{n}^{i}, \boldsymbol{y}_{1:n}) d\boldsymbol{x}_{n}$

$$= \mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{\bar{x}}_{n}^{i}, \boldsymbol{\bar{P}}_{n}^{i}) d\boldsymbol{x}_{n}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

on	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusion
	0000		000	0000	0
	0000000		0	000	0
			0000		

Computation of point estimates

• The posterior-mean estimators of θ and x become

$$\hat{\boldsymbol{\theta}}_{n} = \int \boldsymbol{\theta} p(\boldsymbol{\theta} | \boldsymbol{y}_{1:n}) d\boldsymbol{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\theta}_{n}^{i} = \hat{\boldsymbol{\theta}}_{n}^{N},$$
$$\boldsymbol{x}_{n} = \int \boldsymbol{x} p(\boldsymbol{x} | \boldsymbol{y}_{1:n}, \boldsymbol{\theta}) d\boldsymbol{x}_{n} \approx \frac{1}{N} \sum_{i=1}^{N} \bar{\boldsymbol{x}}_{n}^{i} = \boldsymbol{x}_{n}^{N}.$$

• The mean square error (MSE) of $\hat{oldsymbol{ heta}}_n$ is calculated as

$$MSE_n = \int \| \boldsymbol{\theta} - \hat{\boldsymbol{\theta}}_n \|^2 p(\boldsymbol{\theta}|\boldsymbol{y}_{1:n}) d\boldsymbol{\theta}$$
$$\approx \frac{1}{N} \sum_{i=1}^N \| \boldsymbol{\theta}_n^i - \hat{\boldsymbol{\theta}}_n^N \|^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Nested Hybrid Filters

Convergence Analysis

Numerical results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conclusion O O

Index

Introduction

State of the art and contributions

Nested Hybrid Filters

Dynamical Model Nested Filters

Convergence Analysis

Convergence theorem and analysis of the divergence between μ and $\bar{\mu}$

Numerical results

Lorenz 96 Model Simulation setup Results

SQMC

Getting into some details Sequential Quasi-Monte Carlo

Conclusions

Concluding remarks Future work

Convergence Analysis

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

Preliminaries and notation

For the integral of a function $a(\theta)$ w.r.t. a measure α , hereafter we use the shorthand

$$(\mathbf{a}, \alpha) \coloneqq \int \mathbf{a}(\mathbf{\theta}) \alpha(\mathbf{d}\mathbf{\theta}).$$

The sequence of posterior probability measures of the unknown parameters, $\mu_n(d\theta) \coloneqq p(\theta|\mathbf{y}_{1:n})d\theta$, $n \ge 1$, can be constructed recursively starting from a prior μ_0 as

$$\mu_n = u_n \star \mu_{n-1}$$
 where $(f, u_n \star \alpha) = \frac{(fu_n, \alpha)}{(u_n, \alpha)}$.

If, instead of the true likelihood u_n , we use another function $\bar{u}_n \neq u_n$ to update the posterior probability measure then we obtain the new sequence of measures

$$\bar{\mu}_0 = \mu_0, \quad \bar{\mu}_n = \bar{u}_n \star \bar{\mu}_{n-1}, \quad n = 1, 2, \dots$$

Intro	dı	ict	io	n
00				

Convergence Analysis

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

Convergence Theorem

A.1. The estimator $\hat{u}_n(\theta)$ is random and can be written as

 $\hat{u}_n(\boldsymbol{\theta}) = \bar{u}_n(\boldsymbol{\theta}) + m_n(\boldsymbol{\theta}),$

where $m_n(\theta)$ is a zero-mean random variable with finite variance. Furthermore, the mean $\bar{u}_n(\theta) = \mathsf{E}[\hat{u}_n(\theta)]$ has the form

 $\bar{u}_n(\theta) = u_n(\theta) + b_n(\theta),$

where $b_n(\theta)$ is a deterministic and bounded bias function.

Theorem 1

Let the sequence of observations $y_{1:n_o}$ be arbitrary but fixed, with $n_o < \infty$, and choose an arbitrary function $h \in B(D)$. Let $\mu_n^N = \frac{1}{N} \sum_{i=1}^N \delta_{\theta_n^i}$ be the random probability measure in the parameter space generated by the nested filter. If A.1 holds and under regularity conditions, then

$$\|(h,\mu_n^N)-(h,\bar{\mu}_n)\|_p \le \frac{c_n\|h\|_{\infty}}{\sqrt{N}}, \quad \text{for } n=0,1,\ldots,n_o,$$

where $\{c_n\}_{0 \le n \le n_0}$ is a sequence of constants independent of N. \Box

Intro	du	icti	on
00			

Convergence Analysis

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

Convergence Theorem

A.1. The estimator $\hat{u}_n(\theta)$ is random and can be written as

 $\hat{u}_n(\boldsymbol{\theta}) = \bar{u}_n(\boldsymbol{\theta}) + m_n(\boldsymbol{\theta}),$

where $m_n(\theta)$ is a zero-mean random variable with finite variance. Furthermore, the mean $\bar{u}_n(\theta) = \mathsf{E}[\hat{u}_n(\theta)]$ has the form

$$\bar{u}_n(\boldsymbol{\theta}) = u_n(\boldsymbol{\theta}) + b_n(\boldsymbol{\theta}),$$

where $b_n(\theta)$ is a deterministic and bounded bias function.

Theorem 1

Let the sequence of observations $y_{1:n_o}$ be arbitrary but fixed, with $n_o < \infty$, and choose an arbitrary function $h \in B(D)$. Let $\mu_n^N = \frac{1}{N} \sum_{i=1}^N \delta_{\theta_n^i}$ be the random probability measure in the parameter space generated by the nested filter. If A.1 holds and under regularity conditions, then

$$\|(h,\mu_n^N) - (h,\bar{\mu}_n)\|_p \le \frac{c_n \|h\|_{\infty}}{\sqrt{N}}, \quad \text{for } n = 0, 1, \dots, n_o,$$

where $\{c_n\}_{0 \le n \le n_o}$ is a sequence of constants independent of N. $(\Box) + (\Box) +$

Nested Hybrid Filters

Convergence Analysis

Numerical results	SQMC	
000	0000	
0	000	
0000		

Index

Introduction

State of the art and contributions

Nested Hybrid Filters

Dynamical Mode Nested Filters

Convergence Analysis

Convergence theorem and analysis of the divergence between μ and $\bar{\mu}$

Numerical results

Lorenz 96 Model Simulation setup Results

SQMC

Getting into some details Sequential Quasi-Monte Carlo

Conclusions

Concluding remarks Future work

iction	Nested	Hybrid	Filters
	0000		
	00000	0000	

Convergence Analysis

Numerical results	SQMC	Conclusions
•00	0000	0
0	000	0
0000		

A Stochastic Lorenz 96 Model

• The model consists of two sets of dynamic variables, x(t) and z(t), that displays some key features of atmosphere dynamics (including chaotic behaviour) in a relatively simple model of arbitrary dimension. The system of differential equations takes the form

$$\dot{\mathbf{x}}(t) = \mathbf{f}_1(\mathbf{x}(t), \mathbf{z}(t), \alpha) dt + dW$$

$$\dot{\mathbf{z}}(t) = \mathbf{f}_2(\mathbf{x}(t), \mathbf{z}(t), \alpha) dt + d\bar{W}$$
(16)

• Let us assume there are d_x slow variables and L fast variables per slow variable. The maps, f_1 and f_2 functions, can be written as

$$\boldsymbol{f}_1 = [\boldsymbol{f}_{11}, \dots, \boldsymbol{f}_{1d_x}]^{\mathsf{T}},$$

$$\boldsymbol{f}_2 = [\boldsymbol{f}_{21}, \dots, \boldsymbol{f}_{2L}]^{\mathsf{T}},$$

where

$$f_{1j}(\mathbf{x}, \mathbf{z}, \alpha) = -x_{j-1}(x_{j-2} - x_{j+1}) - x_j + F - \frac{HC}{B} \sum_{l=(j-1)L}^{Lj-1} z_l,$$

$$f_{2l}(\mathbf{x}, \mathbf{z}, \alpha) = -CBz_{l+1}(z_{l+2} - z_{l-1}) - Cz_l + \frac{CF}{B} + \frac{HC}{B} x_{\lfloor \frac{l-1}{L} \rfloor}.$$

Intr	od	uc	ti	on	
00					

Convergence Analysis

Numerical results	SQMC	Conclusions
•00	0000	0
0	000	0
0000		

A Stochastic Lorenz 96 Model

• The model consists of two sets of dynamic variables, x(t) and z(t), that displays some key features of atmosphere dynamics (including chaotic behaviour) in a relatively simple model of arbitrary dimension. The system of differential equations takes the form

$$\dot{\mathbf{x}}(t) = \mathbf{f}_1(\mathbf{x}(t), \mathbf{z}(t), \alpha) dt + dW$$

$$\dot{\mathbf{z}}(t) = \mathbf{f}_2(\mathbf{x}(t), \mathbf{z}(t), \alpha) dt + d\bar{W}$$
(16)

• Let us assume there are d_x slow variables and L fast variables per slow variable. The maps, f_1 and f_2 functions, can be written as

$$\boldsymbol{f}_1 = [f_{11}, \dots, f_{1d_x}]^{\mathsf{T}},$$

$$\boldsymbol{f}_2 = [f_{21}, \dots, f_{2L}]^{\mathsf{T}},$$

where

$$f_{1j}(\mathbf{x}, \mathbf{z}, \alpha) = -x_{j-1}(x_{j-2} - x_{j+1}) - x_j + F - \frac{HC}{B} \sum_{l=(j-1)L}^{Lj-1} z_l,$$

$$f_{2l}(\mathbf{x}, \mathbf{z}, \alpha) = -CBz_{l+1}(z_{l+2} - z_{l-1}) - Cz_l + \frac{CF}{B} + \frac{HC}{B}x_{\lfloor \frac{l-1}{L} \rfloor}.$$

SAC

ction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusions
	0000	00	000 0000	0000	0

A Stochastic Lorenz 96 Model

 Applying the a discretization method we obtain a discrete-time version of the two-scale Lorenz 96 model

$$\bar{\boldsymbol{x}}_{k} = \bar{\boldsymbol{x}}_{k-1} + h\bar{\boldsymbol{f}}_{1,\sigma}(\bar{\boldsymbol{x}}_{k-1}, \bar{\boldsymbol{z}}_{k-1}, \boldsymbol{\alpha}, \boldsymbol{\nu}_{k}), \quad (17)$$

$$\bar{\boldsymbol{z}}_{k} = \bar{\boldsymbol{z}}_{k-1} + h\bar{\boldsymbol{f}}_{2,\bar{\sigma}}(\bar{\boldsymbol{x}}_{k-1}, \bar{\boldsymbol{z}}_{k-1}, \alpha, \bar{\boldsymbol{v}}_{k})$$
(18)

• We assume that the observations are linear but can only be collected from this system once every *T* discrete time steps and only one out of *K* slow variables can be observed, having the form

$$\boldsymbol{y}_{n} = \begin{bmatrix} \boldsymbol{x}_{K,nT} \\ \boldsymbol{x}_{2K,nT} \\ \vdots \\ \boldsymbol{x}_{d_{Y}K,nT} \end{bmatrix} + \boldsymbol{u}_{n},$$
(19)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

on	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusions
	0000	00	000 0000	0000	0

A Stochastic Lorenz 96 Model

 Applying the a discretization method we obtain a discrete-time version of the two-scale Lorenz 96 model

$$\bar{\boldsymbol{x}}_{k} = \bar{\boldsymbol{x}}_{k-1} + h\bar{\boldsymbol{f}}_{1,\sigma}(\bar{\boldsymbol{x}}_{k-1}, \bar{\boldsymbol{z}}_{k-1}, \boldsymbol{\alpha}, \boldsymbol{\nu}_{k}), \quad (17)$$

$$\bar{\boldsymbol{z}}_{k} = \bar{\boldsymbol{z}}_{k-1} + h\bar{\boldsymbol{f}}_{2,\bar{\sigma}}(\bar{\boldsymbol{x}}_{k-1}, \bar{\boldsymbol{z}}_{k-1}, \alpha, \bar{\boldsymbol{v}}_{k})$$
(18)

• We assume that the observations are linear but can only be collected from this system once every *T* discrete time steps and only one out of *K* slow variables can be observed, having the form

$$\boldsymbol{y}_{n} = \begin{bmatrix} \boldsymbol{x}_{K,nT} \\ \boldsymbol{x}_{2K,nT} \\ \vdots \\ \boldsymbol{x}_{d_{y}K,nT} \end{bmatrix} + \boldsymbol{u}_{n},$$
(19)

1	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Co
	0000		000	0000	0
	0000000		0	000	0
			0000		

A Stochastic Lorenz 96 Model

 We generate both ground-truth values for the slow variables {x_n}_{n≥0} and synthetic observations, {y_n}_{n≥1}. In the algorithm, as a forecast model, we use the differential equation

$$\dot{x}_j = f_j(\mathbf{x}, \mathbf{\theta}) = -x_{j-1}(x_{j-2} - x_{j+1}) - x_j + \mathbf{F} - \ell(x_j, \mathbf{a})$$
 (20)

where

- $a = [a_1, a_2]^{\top}$ is a (constant) parameter vector,
- $\boldsymbol{\theta} = [\boldsymbol{F}, \boldsymbol{a}^{\mathsf{T}}]^{\mathsf{T}}$ contains all the parameters and
- function $\ell(x_j, \mathbf{a})$ is an ansatz, a polynomial in x_j of degree 2, for the coupling term $\frac{HC}{B} \sum_{l=(j-1)L}^{Lj-1} \overline{z}_l$.
- Applying a discretization method we obtain

$$\boldsymbol{x}_{k} = \boldsymbol{x}_{k-1} + h \boldsymbol{\bar{f}}_{\sigma}(\boldsymbol{x}_{k-1}, \boldsymbol{\theta}, \boldsymbol{v}_{k})$$
(21)

Introduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC
00	0000	00	000	0000
	0000000		0000	000

Simulation setup

$$f_{1j}(\mathbf{x}, \mathbf{z}, \alpha) = -x_{j-1}(x_{j-2} - x_{j+1}) - x_j + F - \frac{HC}{B} \sum_{l=(j-1)L}^{L_j-1} z_l,$$

$$f_{2l}(\mathbf{x}, \mathbf{z}, \alpha) = -CBz_{l+1}(z_{l+2} - z_{l-1}) - Cz_l + \frac{CF}{B} + \frac{HC}{B} x_{\lfloor \frac{l-1}{L} \rfloor}.$$
 (22)

Integration step	$h = 10^{-3}$
Model parameters	F = 8, H = 0.75, C = 10 and B = 15
Fast variables	<i>L</i> = 10
Observed variables	K = 2
Noise scaling factors	$\sigma = rac{h}{4} = 0.25 imes 10^{-3}$ and $\sigma_o = 4$

• The accuracy of the estimation is assessed in terms of empirical MSE per dimension averaged over several independent simulation runs.

$$MSE_{k} = \frac{1}{d_{x}} \parallel \breve{\mathbf{x}}_{k} - \widetilde{\mathbf{x}}_{k} \parallel^{2}.$$
(23)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC
00	0000		000	0000
	0000000		0	000
			0000	

NPF vs NHF's

- Dimension $d_x = 50$ and gap between observations of hT = 0.05 continuous-time units.
- N = M = 1400 particles in both layers of NPF.
- N = 200 particles for the first layer of NHFs and M = 50 for the EnKF's run.

Algorithm	Running time	MSE
NPF	6.85 hours	1.872
NHF + EKF	1.196 minutes	1.653
NHF + EnKF	11.674 minutes	0.472

Table: Running times and average MSE (over time and state dimensions) for the NPF and two NHFs, based on the EKF and the EnKF, respectively.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introd	uction
00	

Convergence Analysis

Numerical results	SQMC	Conclusions
000	0000	0
0	000	0
0000		

4000-dimensional Experiment

Sequences of state estimates in x_1 and x_2 and estimates of the parameters $a = [a_1, a_2]^T$ and F over time in a 4,000-dimensional Lorenz 96 model. Variable x_1 is observed (in Gaussian noise), while x_2 is unobserved. The reference values are represented in red lines.

Nested Hybrid Filters 0000 00000000 Convergence Analysis

Numerical results	SQMC	Conclusi	
000	0000	0	
0	000	0	
0000			

NHF-EKF vs NHF-EnKF

Comparison of the NHF-EKF (red lines) and NHF-EnKF (blue lines) in terms of their running time and their *MSE* as the state dimension d_x increase (T = 50 discrete time steps) and as the gap between observations T increases ($d_x = 500$).

▲ロト ▲圖ト ▲注ト ▲注ト 二注 …のへの

Nested Hybrid Filters 0000 0000000 Convergence Analysis

Numerical results	SQMC	Concl
000	0000	0
0	000	0
0000		

(日) (同) (日) (日)

Simplifications Performance

Comparison of the original scheme of NHF using both Gaussian filters (EKF and EnKF) and the inverse simplifications.

Nested Hybrid Filters

Convergence Analysis

Numerical results

SQMC 0000 000

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Index

Introduction

State of the art and contributions

Nested Hybrid Filters

Dynamical Mode Nested Filters

Convergence Analysis

Convergence theorem and analysis of the divergence between μ and $\bar{\mu}$

Numerical results

Lorenz 96 Model Simulation setup Results

SQMC

Getting into some details Sequential Quasi-Monte Carlo

Conclusions

Concluding remarks Future work

Introduction Ne 00 00	ested Hybrid Filters 200 2000000	Convergence Analysis 00	Numerical results 000 0000	SQMC •000 000	Onclusions O
--------------------------	--	----------------------------	----------------------------------	---------------------	-----------------

QMC

- We are going to study an alternative to MC, that works similarly but in a **deterministic way**.
- The main difference with MC is the use of a **low-discrepancy** point set (sub-random or quasi-random) to generate the samples.
- Discrepancy is defined as

$$D(\boldsymbol{u}^{(1:N)}, \mathcal{A}) = \sup_{A \in \mathcal{A}} \left| \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(\boldsymbol{u}^{n} \in [\boldsymbol{a}, \boldsymbol{b}]) - \lambda_{s}(\mathcal{A}) \right|$$

where we have N vectors $\boldsymbol{u}^n \in [0,1)^d$, $\lambda_s(A)$ is the volume of A and A is the family of measurable subsets of $[0,1)^d$.

Introduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusion
00	0000	00	000	0000	0
	0000000		0	000	0
			0000		

QMC

▲口▶▲舂▶▲巻▶▲巻▶ 差 めへで

ntroduction	Nested Hybrid Filters	Convergence Analysis	Numer
00	0000	00	000
	0000000		0

Discrepancy preserving map

SQMC

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Φ : D_θ → [0,1)^d is a mapping that is discrepancy preserving, where D_θ is the support of θ.
- Then, Φ(θ) = (Φ₁(θ₁),...,Φ_n(θ_n)), where Φ_i's are continuous and strictly monotone, e.g.,

$$\Phi_i(\boldsymbol{\theta}_i) = \left[1 + \exp(-\frac{\boldsymbol{\theta}_i - \underline{\boldsymbol{\theta}}_i}{\overline{\boldsymbol{\theta}}_i - \underline{\boldsymbol{\theta}}_i})\right]^{-1}, \quad i = 1, \dots, d$$

where $\underline{\theta}_i = \mu_{\theta_{1:N}} - 2\sigma_{\theta_{1:N}}$ and $\overline{\theta}_i = \mu_{\theta_{1:N}} + 2\sigma_{\theta_{1:N}}$.

Introduction	Nested Hybrid Filters	Convergence Analysis	Numerical results	SQMC	Conclusions
00	0000	00	000	0000	0
	0000000		0000	000	0

Hilbert curve

- The Hilbert curve is a continuous fractal map $H:[0,1) \longrightarrow [0,1)^d$.
- It admits a pseudo-inverse h: [0,1)^d → [0,1), which is used in SQMC to sort the samples θ
 _i.

Hilbert curves of order m = 4, 8, 16.

・ロト ・ 雪 ト ・ ヨ ト

3

Intro	du	cti	on
00			

Convergence Analysis

Numerical results SG

usions
usion

Sequential QMC

Algorithm

- 1. Initialisation
 - 1.1 Generate a QMC point set $\mathbf{v}_0^{(i)}$ in $(0,1]^d$ and compute $\bar{\boldsymbol{\theta}}_0^{(i)}$ from $\kappa_N(d\boldsymbol{\theta}, \mathbf{v}_0^{(i)})$.
 - 1.2 Compute the normalised weights $w_0^i \propto \hat{u}_0(\bar{\theta}_0^i)$.

2. Recursive step

- 2.1 Generate a QMC point set $\boldsymbol{V}_n^{(i)} = [r_n^{(i)}, \boldsymbol{v}_n^{(i)}]$ in $(0, 1]^{d+1}$.
- 2.2 Hilbert sort: find permutation σ_{t-1} such that $h \circ \phi(\theta_n^{\sigma_{t-1}(1)}) \leq \ldots \leq h \circ \phi(\theta_n^{\sigma_{t-1}(N)})$ and reorder the weights $w_n^{\sigma_{t-1}(i)}$.
- 2.3 Find permutation τ such that $r_t^{\tau(1)} \leq \ldots \leq r_t^{\tau(N)}$, and obtain the set $\{\theta_{i=1}^N\}$ applying the inversion method. Compute $\bar{\theta}_{n+1}^{(i)}$ from $\kappa_N(d\theta|\theta_n^i, \mathbf{v}_n^{(i)})$.
- 2.4 Compute $\hat{u}_n(\bar{\theta}_n^i)$ and let $w_n^i \propto \hat{u}_n(\bar{\theta}_n^i)$ be the normalised weight of $\bar{\theta}_n^i$.

roduction	Nested Hybrid Filters 0000 00000000	Convergence Analysis 00	Numerical results 000 0 0000	SQMC 0000 000	Conclusions O O
-----------	---	----------------------------	---------------------------------------	---------------------	-----------------------

Lorenz 63 model

• In this model the state-space consists in three variables (x, y and z), each of them with its respective SDE.

$$f_{x}(x, y, z, S) = -S(x - y), f_{y}(x, y, z, R) = Rx - y - xz, f_{z}(x, y, z, B) = xy - Bz,$$

• In order to do some experiments, they are discretized and the parameters are cosidered known (S = 10, R = 28 and $Q = \frac{8}{3}$).

SQMC vs SMC. Results obtained over 1000 simulation runs of a Lorenz 63 model.

Introd	uction
00	

Convergence Analysis

Numerical results 000 0 0000 QMC (

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Conclusions

Index

Introduction

State of the art and contributions

Nested Hybrid Filters

Dynamical Model Nested Filters

Convergence Analysis

Convergence theorem and analysis of the divergence between μ and $\bar{\mu}$

Numerical results

Lorenz 96 Model Simulation setup Results

SQMC

Getting into some details Sequential Quasi-Monte Carlo

Conclusions

Concluding remarks Future work

Intro	du	icti	on
00			

Convergence Analysis

Numerical results

QMC Conclusions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions

- We have introduced a recursive methodology to estimate the static parameters and the dynamic variables.
- The use of Gaussian filters is investigated as they admit fast implementations that can be well suited to high dimensional systems and two of them are simulated.
- Simplifications in the NHF-EKF and NHF-EnKF allowed the implementation of high dimensional systems.
- We have proved, under very general assumptions, that the proposed method converges (with optimal Monte Carlo rates) to a possibly biased version of the posterior distribution of the parameters.

Introduction Nested Hybrid Filters Convergence Analysis Numerical results SQMC Conclusi 00 0000 00 000 000 0000	ions
--	------

Future work

 Apply SQMC and other filters in the first layer of the algorithm in order to improve its performance.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Use this algorithms with real data thanks to our collaboration with MeteoGalicia.