Nested filtering methods for Bayesian inference in state space models

Sara Pérez Vieites

Advisor: Joaquín Míguez

Department of Signal Theory \& Communications,
Universidad Carlos III de Madrid.

January, 2022

Index

Introduction
The Fundamentals
State of the Art Methods

Model inference

Nested hybrid filters
The algorithm and convergence analysis
Numerical results

Nested Gaussian filters
The algorithm
Numerical results

Conclusions

Index

Introduction
The Fundamentals
State of the Art Methods

Model inference

Nested hybrid filters
The algorithm and convergence analysis
Numerical results

Nested Gaussian filters
The algorithm
Numerical results

Conclusions

Introduction

We aim at estimating the time evolution of dynamical systems of different fields of science, such as:

- Geophysics. Prediction of the weather, ice sea changes, climate (i.e. fluid dynamics).
- Biochemistry. Prediction of the interactions and population of certain molecules.
- Ecology. Prediction of the population of prey and predator species in certain region.
- Quantitative finance. Evaluation/estimation of price options and risk.
- Engineering. Object/target tracking for applications such as surveillance or air traffic control.

Introduction

Study of hare-lynx interactions in a region of Canada.

\square

Introduction

Study of hare-lynx interactions in a region of Canada.

\square

Introduction

Study of hare-lynx interactions in a region of Canada.

Parameters $(\boldsymbol{\theta})$
Prey growth rate
Predator-prey encounters
Predator growth rate
Predator mortality rate

Year
Observations
Number of pelts sold
Predator-prey encounters
Sighting
Predator growth rate etc

Introduction

Study of hare-lynx interactions in a region of Canada.

Parameters $(\boldsymbol{\theta})$
Prey growth rate
Predator-prey encounters
Predator growth rate
Predator mortality rate

Observations $\left(\boldsymbol{y}_{t}\right)$
Number of pelts sold Sighting etc

State-space model

These systems can be represented by Markov state-space dynamical models:

State-space model

These state-space systems can be written as

- \boldsymbol{f} and \boldsymbol{g} are the state

$$
\begin{aligned}
& \boldsymbol{x}_{t}=\boldsymbol{f}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\theta}\right)+\boldsymbol{v}_{t} \\
& \boldsymbol{y}_{t}=\boldsymbol{g}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)+\boldsymbol{r}_{t}
\end{aligned}
$$ transition function and the observation function

- \boldsymbol{v}_{t} and \boldsymbol{r}_{t} are state and observation noises

In terms of a set of relevant probability density functions (pdfs):

- Prior pdfs: $\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$ and $\boldsymbol{x}_{0} \sim p\left(\boldsymbol{x}_{0}\right)$
- Transition pdf of the state: $\boldsymbol{x}_{+} \sim p\left(\boldsymbol{x}_{+} \mid \boldsymbol{x}_{t-1}, \theta\right)$
- Conditional pdf of the observation: $\boldsymbol{y}_{t} \sim p\left(\boldsymbol{y}_{t} \mid \boldsymbol{x}_{t}, \theta\right)$

State-space model

These state-space systems can be written as

- \boldsymbol{f} and \boldsymbol{g} are the state

$$
\begin{aligned}
& \boldsymbol{x}_{t}=\boldsymbol{f}\left(\boldsymbol{x}_{t-1}, \boldsymbol{\theta}\right)+\boldsymbol{v}_{t} \\
& \boldsymbol{y}_{t}=\boldsymbol{g}\left(\boldsymbol{x}_{t}, \boldsymbol{\theta}\right)+\boldsymbol{r}_{t}
\end{aligned}
$$ transition function and the observation function

- \boldsymbol{v}_{t} and \boldsymbol{r}_{t} are state and observation noises

In terms of a set of relevant probability density functions (pdfs):

- Prior pdfs: $\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$ and $\boldsymbol{x}_{0} \sim p\left(\boldsymbol{x}_{0}\right)$
- Transition pdf of the state: $\boldsymbol{x}_{t} \sim p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}, \boldsymbol{\theta}\right)$
- Conditional pdf of the observation: $\boldsymbol{y}_{t} \sim p\left(\boldsymbol{y}_{t} \mid \boldsymbol{x}_{t}, \boldsymbol{\theta}\right)$

State estimation

\longrightarrow We are interested in the Bayesian estimation of the state variables, this is the posterior density function of the state $p\left(\boldsymbol{x}_{t} \mid \boldsymbol{y}_{1: t}, \boldsymbol{\theta}\right)$.

Classical filtering methods:

\longrightarrow Usually θ is not given

State estimation

\longrightarrow We are interested in the Bayesian estimation of the state variables, this is the posterior density function of the state $p\left(\boldsymbol{x}_{t} \mid \boldsymbol{y}_{1: t}, \boldsymbol{\theta}\right)$.

Classical filtering methods:

- They assume $\boldsymbol{\theta}$ is known.
- The predictive pdf can be computed with the conditional pdf $p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}, \boldsymbol{\theta}\right)$ (given by the state-space model).
- The likelihood is given by the state-space model.

State estimation

\longrightarrow We are interested in the Bayesian estimation of the state variables, this is the posterior density function of the state $p\left(\boldsymbol{x}_{t} \mid \boldsymbol{y}_{1: t}, \boldsymbol{\theta}\right)$.

Classical filtering methods:

- They assume $\boldsymbol{\theta}$ is known.
- The predictive pdf can be computed with the conditional pdf $p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}, \boldsymbol{\theta}\right)$ (given by the state-space model).
- The likelihood is given by the state-space model.
\longrightarrow Usually θ is not given.

Parameter estimation

Applying the same principles to parameter estimation

- The likelihood is NOT described by the state-space model.
- Neither the likelihood nor the posterior distribution of $\boldsymbol{\theta}$ can be computed directly.

Parameter estimation

Applying the same principles to parameter estimation

- The likelihood is NOT described by the state-space model.
- Neither the likelihood nor the posterior distribution of $\boldsymbol{\theta}$ can be computed directly.
\longrightarrow Several approaches have been proposed to solve this problem.

State of the Art Methods

Some methods for parameter and state estimation can be classified as
\longrightarrow State augmentation methods with artificial dynamics. They use an extended state vector $\tilde{\boldsymbol{x}}_{t}=\left[\boldsymbol{x}_{t}, \boldsymbol{\theta}_{t}\right]^{\top}$.
\longrightarrow Particle learning (PL) techniques. It is a sampling-resampling scheme that depends only on a set of finite-dimensional statistics.
\longrightarrow Recursive maximum likelihood (RML) methods. They are well-principled but they provide only output point estimates.

State of the Art Methods

During the past years, there have been advances leading to methods that

- aim at calculating the posterior probability distribution of the unknown variables and parameters of the models.
- can be applied to a broad class of models.
- are well-principled probabilistic methods with theoretical guarantees.

State of the Art Methods

Some examples are:

- sequential Monte Carlo square (SMC $\left.{ }^{2}\right)^{1}$
- particle Markov chain Monte Carlo (PMCMC) ${ }^{2}$
- nested particle filter (NPF) ${ }^{3}$: two intertwined layers of Monte Carlo methods (one for the state tracking and the other for the parameter estimation)

${ }^{1}$ Chopin, Jacob, and Papaspiliopoulos, "SMC": A sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates".
${ }^{2}$ Andrieu, Doucet, and Holenstein, "Particle Markov chain Monte Carlo methods".
${ }^{3}$ Crisan and Miguez, "Nested particle filters for online parameter estimation in discrete-time state-space Markov models".

State of the Art Methods

Some examples are:

- sequential Monte Carlo square $\left(\mathrm{SMC}^{2}\right)^{1} \longrightarrow$ batch technique
- particle Markov chain Monte Carlo (PMCMC) ${ }^{2} \longrightarrow$ batch
- nested particle filter (NPF) ${ }^{3}$: two intertwined layers of Monte Carlo methods (one for the state tracking and the other for the parameter estimation)
\longrightarrow it is a recursive technique.

[^0]
State of the Art Methods

Some examples are:

- sequential Monte Carlo square $\left(\mathrm{SMC}^{2}\right)^{1} \longrightarrow$ batch technique
- particle Markov chain Monte Carlo (PMCMC) ${ }^{2} \longrightarrow$ batch
- nested particle filter (NPF) ${ }^{3}$: two intertwined layers of Monte Carlo methods (one for the state tracking and the other for the parameter estimation)
\longrightarrow it is a recursive technique.
\longrightarrow The computational cost becomes prohibitive in high-dimensional problems.

[^1]
Summary

The state-of-the-art methods have one or more of the following issues:

- Lack of theoretical guarantees.
- Restricted to very specific models.
- Estimation error not quantified.
- Batch technique.
- Prohibitive computational cost for high-dimensional problems.

Objectives

We propose a generalised methodology that estimate the joint posterior probability distribution of the parameters and the state that
\longrightarrow works recursively,
\longrightarrow uses the nested structure of the NPF and
\longrightarrow reduces the computational cost.

Index

Introduction
The Fundamentals
State of the Art Methods

Model inference

Nested hybrid filters
The algorithm and convergence analysis
Numerical results

Nested Gaussian filters
The algorithm
Numerical results

Conclusions

Optimal filter

We assume $\boldsymbol{\theta}$ and the previous post. pdf $p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{y}_{1: t-1}, \boldsymbol{\theta}\right)$ are known.

Optimal filter

We assume $\boldsymbol{\theta}$ and the previous post. pdf $p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{y}_{1: t-1}, \boldsymbol{\theta}\right)$ are known.

Optimal filter

We assume $\boldsymbol{\theta}$ and the previous post. pdf $p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{y}_{1: t-1}, \boldsymbol{\theta}\right)$ are known.

Model inference

We aim at computing the joint posterior pdf $p\left(\boldsymbol{\theta}, \boldsymbol{x}_{t} \mid \boldsymbol{y}_{1: t}\right)$, that can be written as

$$
p\left(\boldsymbol{\theta}, \boldsymbol{x}_{t} \mid \boldsymbol{y}_{1: t}\right)=\underbrace{p\left(\boldsymbol{x}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t}\right)}_{2^{\text {nd }} \text { layer }} \underbrace{p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right)}_{1^{\text {st }} \text { layer }}
$$

\longrightarrow The key difficulty in this class of models is the Bayesian estimation of the parameter vector $\boldsymbol{\theta}$.

$1^{\text {st }}$ layer of inference

The posterior pdf can be written as

$$
p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right) \propto p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right) p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t-1}\right)
$$

$1^{\text {st }}$ layer of inference

The posterior pdf can be written as

$$
p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right) \propto p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right) p\left(\theta \mid \boldsymbol{y}_{1: t-1}\right)
$$

$1^{\text {st }}$ layer of inference

$1^{\text {st }}$ layer of inference

The posterior pdf can be written as

$$
p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right) \propto p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right) p\left(\theta \mid \boldsymbol{y}_{1: t-1}\right)
$$

where

$$
p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right)=
$$

$$
\int p\left(\boldsymbol{y}_{t} \mid \boldsymbol{x}_{t}, \boldsymbol{\theta}\right) p\left(\boldsymbol{x}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right) d \boldsymbol{x}_{t}
$$

$1^{\text {st }}$ layer of inference

Model inference

$p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t-1}\right)$

Pred. pdf of $\boldsymbol{\theta}$

$$
p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right)=\int p\left(\boldsymbol{y}_{t} \mid \boldsymbol{x}_{t}, \boldsymbol{\theta}\right) p\left(\boldsymbol{x}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right) d \boldsymbol{x}_{t}
$$

Likelihood of $\boldsymbol{\theta}$

$$
\begin{aligned}
& \underbrace{p\left(\boldsymbol{x}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right)}_{\text {Pred. pdf of } \boldsymbol{x}}=\int p\left(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{t-1}, \boldsymbol{\theta}\right) p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right) d \boldsymbol{x}_{t-1} \\
& \underbrace{p\left(\boldsymbol{y}_{t} \mid \boldsymbol{x}_{t}, \boldsymbol{\theta}\right)}_{\text {Likelihood of } \boldsymbol{x}} \\
& \underbrace{p\left(\boldsymbol{x}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t}\right)}_{\text {Post. pdf of } \boldsymbol{x}} \propto p\left(\boldsymbol{y}_{t} \mid \boldsymbol{x}_{t}, \boldsymbol{\theta}\right) p\left(\boldsymbol{x}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right) \\
& \hline
\end{aligned}
$$

$p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right) \propto p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right) p\left(\theta \mid \boldsymbol{y}_{1: t-1}\right)$
Post. pdf of $\boldsymbol{\theta}$

Index

Introduction
 The Fundamentals
 State of the Art Methods

Model inference

Nested hybrid filters
The algorithm and convergence analysis
Numerical results

Nested Gaussian filters
The algorithm
Numerical results

Conclusions

Nested hybrid filter

- We introduce the use of different types of Monte Carlo methods in the first layer of the algorithm (SMC or SQMC).
- Gaussian methods are applied in the second layer (EKFs, EnKFs, etc).
- We obtain theoretical guarantees on the convergence.

Nested hybrid filter

Nested hybrid filter

SMC (N samples)
$1^{\text {st }}$ layer

EKF (for each $\overline{\boldsymbol{\theta}}_{t}^{i}$)

	$2^{\text {nd }}$ layer

Nested hybrid filter

Nested hybrid filter

Convergence Theorem

The sequence of posterior probability measures of the unknown parameters, $p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right), t \geq 1$, can be constructed recursively starting from a prior $p(\boldsymbol{\theta})$ as

$$
p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right) \propto u_{t}(\boldsymbol{\theta}) \star p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t-1}\right)
$$

where $u_{t}(\boldsymbol{\theta})=p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right)$.
A.1. The estimator $\hat{u}_{t}(\boldsymbol{\theta})$ is random and can be written as

$$
\hat{u}_{t}(\theta)=u_{t}(\theta)+b_{t}(\theta)+m_{t}(\theta)
$$

where $u_{t}(\boldsymbol{\theta}):=p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right)$ is the true likelihood, $m_{t}(\boldsymbol{\theta})$ is a zero-mean random variable with finite variance and $b_{t}(\boldsymbol{\theta})$ is a deterministic and bounded bias function.

Convergence Theorem

The sequence of posterior probability measures of the unknown parameters, $p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right), t \geq 1$, can be constructed recursively starting from a prior $p(\boldsymbol{\theta})$ as

$$
p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right) \propto u_{t}(\boldsymbol{\theta}) \star p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t-1}\right)
$$

where $u_{t}(\boldsymbol{\theta})=p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right)$.
A.1. The estimator $\hat{u}_{t}(\boldsymbol{\theta})$ is random and can be written as

$$
\hat{u}_{t}(\boldsymbol{\theta})=u_{t}(\boldsymbol{\theta})+b_{t}(\boldsymbol{\theta})+m_{t}(\boldsymbol{\theta}),
$$

where $u_{t}(\boldsymbol{\theta}):=p\left(\boldsymbol{y}_{t} \mid \boldsymbol{\theta}, \boldsymbol{y}_{1: t-1}\right)$ is the true likelihood, $m_{t}(\boldsymbol{\theta})$ is a zero-mean random variable with finite variance and $b_{t}(\boldsymbol{\theta})$ is a deterministic and bounded bias function.

Convergence Theorem

Theorem 1

Let the sequence of observations $y_{1: t_{o}}$ be arbitrary but fixed, with $t_{0}<\infty$, and choose an arbitrary function $h \in B(D)$. Let $p^{N}\left(d \boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{\boldsymbol{\theta}_{t}^{i}}(\boldsymbol{d} \boldsymbol{\theta})$ be the random probability measure in the parameter space generated by the nested filter. If A. 1 holds and under regularity conditions, then

$$
\left\|\int h(\boldsymbol{\theta}) p^{N}\left(d \boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right)-\int h(\boldsymbol{\theta}) \bar{p}\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right) d \boldsymbol{\theta}\right\|_{p} \leq \frac{c_{t}\|h\|_{\infty}}{\sqrt{N}}
$$

for $t=0,1, \ldots, t_{0}$, where $\left\{c_{t}\right\}_{0 \leq t \leq t_{o}}$ is a sequence of constants independent of N.

If, instead of the true likelihood $u_{t}(\theta)$, we use another biased function $\bar{u}_{t}(\theta) \neq u_{t}(\theta)$ to update the posterior probability measure $p\left(\theta \mid \boldsymbol{y}_{1: t}\right)$, then we obtain the new sequence of measures

Convergence Theorem

Theorem 1

Let the sequence of observations $y_{1: t_{o}}$ be arbitrary but fixed, with $t_{0}<\infty$, and choose an arbitrary function $h \in B(D)$. Let $p^{N}\left(d \boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right)=\frac{1}{N} \sum_{i=1}^{N} \delta_{\boldsymbol{\theta}_{t}^{i}}(\boldsymbol{d} \boldsymbol{\theta})$ be the random probability measure in the parameter space generated by the nested filter. If A. 1 holds and under regularity conditions, then

$$
\left\|\int h(\boldsymbol{\theta}) p^{N}\left(d \boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right)-\int h(\boldsymbol{\theta}) \bar{p}\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right) d \boldsymbol{\theta}\right\|_{p} \leq \frac{c_{t}\|h\|_{\infty}}{\sqrt{N}}
$$

for $t=0,1, \ldots, t_{0}$, where $\left\{c_{t}\right\}_{0 \leq t \leq t_{o}}$ is a sequence of constants independent of N.

If, instead of the true likelihood $u_{t}(\boldsymbol{\theta})$, we use another biased function $\bar{u}_{t}(\boldsymbol{\theta}) \neq u_{t}(\boldsymbol{\theta})$ to update the posterior probability measure $p\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t}\right)$, then we obtain the new sequence of measures

$$
\bar{p}\left(\theta \mid \boldsymbol{y}_{1: t}\right) \propto \bar{u}_{t}(\boldsymbol{\theta}) \star \bar{p}\left(\boldsymbol{\theta} \mid \boldsymbol{y}_{1: t-1}\right), \quad t=1,2, \ldots
$$

A stochastic Lorenz 96 model

A stochastic Lorenz 96 model

We consider a stochastic two-scale Lorenz 96 model that is described by

- the slow state variable, $\boldsymbol{x}=\left[x_{1}, \ldots, x_{d_{x}}\right]^{\top}$,
- the fast state variable, $\boldsymbol{z}=\left[z_{1}, \ldots, z_{d_{2}}\right]^{\top}$, with $d_{z}=L d_{x}$,
- the static parameters $\boldsymbol{\alpha}=[F, C, B, H]^{\top}$ and
- for $j=1, \ldots, d_{x}$ and $I=1, \ldots, d_{z}$, the following SDEs (in continuous time)

$$
\begin{aligned}
& d x_{j}=\overbrace{\left[-x_{j-1}\left(x_{j-2}-x_{j+1}\right)-x_{j}+F-\frac{H C}{B} \sum_{l=(j-1) L}^{L j-1} z_{l}\right]}^{\boldsymbol{f}_{1, j}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\alpha})} d \tau+\sigma_{x} d v_{j} \\
& d z_{l}=\underbrace{\left[-C B z_{l+1}\left(z_{l+2}-z_{l-1}\right)-C z_{l}+\frac{C F}{B}+\frac{H C}{B} x_{[(l-1) L]}\right]}_{\boldsymbol{f}_{2, l}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\alpha})} d \tau+\sigma_{z} d w_{l}
\end{aligned}
$$

A Stochastic Lorenz 96 Model

- Applying a discretization method with a step Δ, we obtain the discrete-time version

$$
\begin{aligned}
& \boldsymbol{x}_{t}=\boldsymbol{x}_{t-1}+\Delta \boldsymbol{f}_{1}\left(\boldsymbol{x}_{t-1}, \boldsymbol{z}_{t-1}, \boldsymbol{\alpha}\right)+\sigma_{\boldsymbol{x}} \boldsymbol{v}_{t} \\
& \boldsymbol{z}_{t}=\boldsymbol{z}_{t-1}+\Delta \boldsymbol{f}_{2}\left(\boldsymbol{x}_{t-1}, \boldsymbol{z}_{t-1}, \boldsymbol{\alpha}\right)+\sigma_{\boldsymbol{z}} \boldsymbol{w}_{t}
\end{aligned}
$$

- The observations are written as

\longrightarrow This model is used to generate the ground truth values for the slow variables $\left\{\boldsymbol{x}_{t}\right\}_{t \geq 0}$, and the synthetic observations, $\left\{\boldsymbol{y}_{t}\right\}_{t \geq 0}$.

A Stochastic Lorenz 96 Model

- Applying a discretization method with a step Δ, we obtain the discrete-time version

$$
\begin{aligned}
& \boldsymbol{x}_{t}=\boldsymbol{x}_{t-1}+\Delta \boldsymbol{f}_{1}\left(\boldsymbol{x}_{t-1}, \boldsymbol{z}_{t-1}, \boldsymbol{\alpha}\right)+\sigma_{\boldsymbol{x}} \boldsymbol{v}_{t} \\
& \boldsymbol{z}_{t}=\boldsymbol{z}_{t-1}+\Delta \boldsymbol{f}_{2}\left(\boldsymbol{x}_{t-1}, \boldsymbol{z}_{t-1}, \boldsymbol{\alpha}\right)+\sigma_{\boldsymbol{z}} \boldsymbol{w}_{t}
\end{aligned}
$$

- The observations are written as

$$
\boldsymbol{y}_{t}=\left[\begin{array}{c}
x_{K, t m} \tag{1}\\
x_{2} K, t m \\
\vdots \\
x_{d_{y} K, t m}
\end{array}\right]+\boldsymbol{r}_{t}
$$

\longrightarrow This model is used to generate the ground truth values for the slow variables $\left\{\boldsymbol{x}_{t}\right\}_{t \geq 0}$, and the synthetic observations, $\left\{\boldsymbol{y}_{t}\right\}_{t \geq 0}$.

A Stochastic Lorenz 96 Model

- Applying a discretization method with a step Δ, we obtain the discrete-time version

$$
\begin{aligned}
& \boldsymbol{x}_{t}=\boldsymbol{x}_{t-1}+\Delta \boldsymbol{f}_{1}\left(\boldsymbol{x}_{t-1}, \boldsymbol{z}_{t-1}, \boldsymbol{\alpha}\right)+\sigma_{\boldsymbol{x}} \boldsymbol{v}_{t} \\
& \boldsymbol{z}_{t}=\boldsymbol{z}_{t-1}+\Delta \boldsymbol{f}_{2}\left(\boldsymbol{x}_{t-1}, \boldsymbol{z}_{t-1}, \boldsymbol{\alpha}\right)+\sigma_{\boldsymbol{z}} \boldsymbol{w}_{t}
\end{aligned}
$$

- The observations are written as

$$
\boldsymbol{y}_{t}=\left[\begin{array}{c}
x_{K, t m} \tag{1}\\
x_{2 K, t m} \\
\vdots \\
x_{d_{y} K, t m}
\end{array}\right]+\boldsymbol{r}_{t},
$$

\longrightarrow This model is used to generate the ground truth values for the slow variables $\left\{\boldsymbol{x}_{t}\right\}_{t \geq 0}$, and the synthetic observations, $\left\{\boldsymbol{y}_{t}\right\}_{t \geq 0}$.

A Stochastic Lorenz 96 Model

For the forecast model, we use instead the differential equation

$$
\begin{equation*}
\dot{x}_{j}=f_{j}(\boldsymbol{x}, \boldsymbol{\theta})=-x_{j-1}\left(x_{j-2}-x_{j+1}\right)-x_{j}+F-\frac{H C}{B} \sum_{l=(j-1) L}^{L j-1} z_{l} \tag{2}
\end{equation*}
$$

where

- function $\ell\left(x_{j}, a\right)$ is a polynomial in x_{j} of degree 2 , for the coupling term $\frac{H C}{B} \sum_{l=(j-1) L}^{L j-1} \overline{\bar{Z}}_{l}$.
- $a=\left[a_{1}, a_{2}\right]^{\top}$ is a (constant) parameter vector,
- $\theta=\left[F, a^{\top}\right]^{\top}$ contains all the parameters.

A Stochastic Lorenz 96 Model

For the forecast model, we use instead the differential equation

$$
\begin{equation*}
\dot{x}_{j}=f_{j}(\boldsymbol{x}, \boldsymbol{\theta})=-x_{j-1}\left(x_{j-2}-x_{j+1}\right)-x_{j}+F-\ell\left(x_{j}, \mathrm{a}\right) \tag{2}
\end{equation*}
$$

where

- function $\ell\left(x_{j}, a\right)$ is a polynomial in x_{j} of degree 2 , for the coupling
- $a=\left[a_{1}, a_{2}\right]^{\top}$ is a (constant) parameter vector,
- $\theta=\left[F, \mathrm{a}^{\top}\right]^{\top}$ contains all the parameters.

A Stochastic Lorenz 96 Model

For the forecast model, we use instead the differential equation

$$
\begin{equation*}
\dot{x}_{j}=f_{j}(\boldsymbol{x}, \boldsymbol{\theta})=-x_{j-1}\left(x_{j-2}-x_{j+1}\right)-x_{j}+F-\ell\left(x_{j}, \mathrm{a}\right) \tag{2}
\end{equation*}
$$

where

- function $\ell\left(x_{j}\right.$, a) is a polynomial in x_{j} of degree 2 , for the coupling term $\frac{H C}{B} \sum_{l=(j-1) L}^{L j-1} \overline{\bar{l}}_{l}$.
- $a=\left[a_{1}, a_{2}\right]^{\top}$ is a (constant) parameter vector,
- $\boldsymbol{\theta}=\left[F, \mathrm{a}^{\top}\right]^{\top}$ contains all the parameters.

Numerical results

We have implemented four different algorithms following the nested hybrid methodology:

		2nd layer	
		Extended Kalman filter (EKF)	
1st layer	Sequential Monte Carlo (SMC) filter (EnKF)		
	Sequential quasi- Monte Carlo (SQMC)	SMC-EKF	
SQMC-EKF	SQC-EnKF		

Numerical results

Algorithm	Running time (minutes)	MSE
NHF: SQMC-EKF	2.16	0.46
NHF: SMC-EKF	2.27	0.49
NHF: SQMC-EnKF	6.83	0.62
NHF: SMC-EnKF	7.12	0.95
NPF $(N=M=800)$	17.96	11.91

\longrightarrow In the four cases of NHF, the accuracy and the running time are improved in comparison to the NPF.
\longrightarrow The least error and running times are obtained with the NHFs that use the EKF in the second layer.
\longrightarrow Using the same samples N, the SQMC reduces slightly the running time and the error compared to the SMC.

Numerical results

Numerical results

\longrightarrow As the gap between observations m increases, less data points are effectively available for the estimation task.

Summary of NHFs

- We introduce the nested hybrid filters (NHFs), that use Monte Carlo-based methods in the first layer and Gaussian methods in the second layer.
- The algorithm converges to a well defined limit distribution.
- We have implemented four algorithms (SQMC-EKF, SQMC-EnKF, SMC-EKF and SMC-EnKF) that outperform the NPF.
- The selection of the filtering techniques in each layer depends on the specific problem.

Index

```
Introduction
The Fundamentals
State of the Art Methods
```


Model inference

```
Nested hybrid filters
The algorithm and convergence analysis
Numerical results
```

Nested Gaussian filters
The algorithm
Numerical results

Conclusions

Nested Gaussian filter

- We introduce the use of deterministic sampling techniques in the first layer of the algorithm, such as the cubature Kalman filter (CKF) and the unscented Kalman filter (UKF).
- We keep applying Gaussian methods in the second layer of the algorithm.
- We describe how the algorithms can work sequentially and recursively.

Nested Gaussian filter

UKF (M sigma-points)	
EKF (for each $\left.\boldsymbol{\theta}_{t}^{i}\right)$	

Nested Gaussian filter

Nested Gaussian filter

Nested Gaussian filter

Nested Gaussian filter

Nested Gaussian filter

UKF (M sigma-points)	$1^{\text {st }}$ layer

EKF (for each $\boldsymbol{\theta}_{t}^{i}$)

Nested Gaussian filter

Nested Gaussian filter

Recursivity of NGF

\longrightarrow This filter is not recursive.

- As every time step t the sigma-points $\boldsymbol{\theta}_{t}^{i}$ are recalculated, the computations of the second layer need to start from scratch.
- In order to make it recursive we approximate

$$
p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{y}_{1: t-1}, \boldsymbol{\theta}_{t}^{i}\right) \approx p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{y}_{1: t-1}, \boldsymbol{\theta}_{t-1}^{i}\right) .
$$

Recursive NGF

Every time step the norm $\left\|\boldsymbol{\theta}_{t}^{i}-\boldsymbol{\theta}_{t-1}^{i}\right\|_{p}$ is computed and compared against a prescribed relative threshold $\lambda>0$.

- If $\left\|\boldsymbol{\theta}_{t}^{i}-\boldsymbol{\theta}_{t-1}^{i}\right\|_{p}<\lambda\left\|\boldsymbol{\theta}_{t-1}^{i}\right\|_{p}$,
we assume $p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{y}_{1: t-1}, \boldsymbol{\theta}_{t}^{i}\right) \approx p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{y}_{1: t-1}, \boldsymbol{\theta}_{t-1}^{i}\right)$.
- If $\left\|\boldsymbol{\theta}_{t}^{i}-\boldsymbol{\theta}_{t-1}^{i}\right\|_{p}>\lambda\left\|\boldsymbol{\theta}_{t-1}^{i}\right\|_{p}$,
we need to compute the pdf $p\left(\boldsymbol{x}_{t-1} \mid \boldsymbol{y}_{1: t-1}, \boldsymbol{\theta}_{t}^{i}\right)$ from the prior $p\left(x_{0}\right)$.

Nested Gaussian filter

The Lorenz 63 model

We consider a stochastic Lorenz 63 model, whose dynamics are described by

- the state variables \boldsymbol{x}_{t} with dimension $d_{x}=3$,
- the static parameters $\boldsymbol{\theta}=[S, R, B]^{\top}$ and
- the following SDEs

$$
\begin{aligned}
d x_{1} & =\left[-S\left(x_{1}-x_{2}\right)\right] d \tau+\sigma d v_{1}, \\
d x_{2} & =\left[R x_{1}-x_{2}-x_{1} x_{3}\right] d \tau+\sigma d v_{2}, \\
d x_{3} & =\left[x_{1} x_{2}-B x_{3}\right] d \tau+\sigma d v_{3},
\end{aligned}
$$

The Lorenz 63 model

- Applying a discretization method with step Δ, we obtain

$$
\begin{aligned}
& x_{1, t+1}=x_{1, t}-\Delta S\left(x_{1, t}-x_{2, t}\right)+\sqrt{\Delta} \sigma v_{1, t}, \\
& x_{2, t+1}=x_{2, t}+\Delta\left[\left(R-x_{3, t}\right) x_{1, t}-x_{2, t}\right]+\sqrt{\Delta} \sigma v_{2, t}, \\
& x_{3, t+1}=x_{3, t}+\Delta\left(x_{1, t} x_{2, t}-B x_{3, t}\right)+\sqrt{\Delta} \sigma v_{3, t},
\end{aligned}
$$

- We assume linear observations of the form

$$
\boldsymbol{y}_{t}=k_{0}\left[\begin{array}{l}
x_{1, t} \\
x_{3, t}
\end{array}\right]+\boldsymbol{r}_{t},
$$

where k_{0} is a fixed known parameter and $\boldsymbol{r}_{t} \sim \mathcal{N}\left(\boldsymbol{r}_{t} \mid \mathbf{0}, \sigma_{y}^{2} \boldsymbol{I}_{2}\right)$.

Numerical results

\longrightarrow We observe that below $\lambda=10^{-3}$ there is almost no improvement in the error of the state.

Numerical results

Summary of NGFs

- We introduce the nested Gaussian filters (NGFs), that use deterministic sampling methods in the first layer and Gaussian methods in the second layer.
- We have introduced and assessed the values of a relative threshold $\lambda>0$ that enables the algorithm to work recursively.
- We have implemented a UKF-EKF and compare it to other algorithms.

Index

```
Introduction
    The Fundamentals
    State of the Art Methods
Model inference
Nested hybrid filters
    The algorithm and convergence analysis
    Numerical results
Nested Gaussian filters
    The algorithm
    Numerical results
```

Conclusions

Conclusions

- We have introduced a generalized nested methodology that estimates the full posterior distribution of the static parameters and state dynamical variables.
- This probabilistic methodology admits different types of filtering techniques in each layer, leading to the nested hybrids filters, the nested Gaussian filters and the NPF.
- We keep the algorithm working recursively by applying the jittering or by using a distance dependant on the parameter space.
- We have proved, under general assumptions, that the family of nested hybrid filters converges to a possibly biased version of the posterior distribution of the parameters.
- The use of Gaussian filters in the nested methodology admits fast implementations and are well suited to high-dimensional systems.

Conclusions

- Further generalization of the nested filters to estimate heterogeneous multi-scale systems.
- Three layers of computation for the static parameters and the two sets of state variables.

Future research

- Further research in the extension of the nested methodology to general multi-scale state-space models.
- Further study of the NGFs by introducing cubature rules in the first layer of the algorithm.
- Introduction to recursive maximum likelihood methods in the first layer of the algorithm.
- Extension of the convergence analysis.
- Application of the methodology to large-scale models.

List of publications

- Sara Pérez-Vieites and Joaquín Míguez. "Kalman-based nested hybrid filters for recursive inference in state-space models". 2020 28th European Signal Processing Conference (EUSIPCO), 2468-2472.
- Sara Pérez-Vieites and Joaquín Míguez. "A nested hybrid filter for parameter estimation and state tracking in homogeneous multi-scale models". 2020 IEEE 23rd International Conference on Information Fusion (FUSION), 1-8.
- Sara Pérez-Vieites, Inés Pérez Mariño and Joaquín Míguez. "Probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems". Physical Review E, 98 (6), 063305.
- Sara Pérez-Vieites and Joaquín Míguez. "Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models". Signal Processing, 189, 108295.

Thank you!

[^0]: ${ }^{1}$ Chopin, Jacob, and Papaspiliopoulos, "SMC": A sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates".
 ${ }^{2}$ Andrieu, Doucet, and Holenstein, "Particle Markov chain Monte Carlo methods".
 ${ }^{3}$ Crisan and Miguez, "Nested particle filters for online parameter estimation in discrete-time state-space Markov models" .

[^1]: ${ }^{1}$ Chopin, Jacob, and Papaspiliopoulos, "SMC": A sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates".
 ${ }^{2}$ Andrieu, Doucet, and Holenstein, "Particle Markov chain Monte Carlo methods".
 ${ }^{3}$ Crisan and Miguez, "Nested particle filters for online parameter estimation in discrete-time state-space Markov models" .

