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Introduction

We aim at estimating the time evolution of dynamical systems of
different fields of science, such as:

● Geophysics. Prediction of the weather, ice sea changes, climate
(i.e. fluid dynamics).

● Biochemistry. Prediction of the interactions and population of
certain molecules.

● Ecology. Prediction of the population of prey and predator species
in certain region.

● Quantitative finance. Evaluation/estimation of price options and
risk.

● Engineering. Object/target tracking for applications such as
surveillance or air traffic control.

● . . .
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Introduction
Study of hare-lynx interactions in a region of Canada.
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State-space model

These systems can be represented by Markov state-space dynamical
models:

x0 x1 x2 x t

y 1 y 2 y t

θ θ θ

θθ θ
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State-space model

These state-space systems can be written as

x t = f (x t−1,θ) + v t ,

y t = g(x t ,θ) + r t ,

- f and g are the state
transition function and the
observation function

- v t and r t are state and
observation noises

In terms of a set of relevant probability density functions (pdfs):

● Prior pdfs: θ ∼ p(θ) and x0 ∼ p(x0)
● Transition pdf of the state: x t ∼ p(x t ∣x t−1,θ)
● Conditional pdf of the observation: y t ∼ p(y t ∣x t ,θ)
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State estimation

Ð→ We are interested in the Bayesian estimation of the state variables,
this is the posterior density function of the state p(x t ∣y 1∶t ,θ).

Classical filtering methods:

Predictive pdf
p(x t ∣y 1∶t−1,θ)

Likelihood
p(y t ∣x t ,θ)

Posterior pdf
p(x t ∣y 1∶t ,θ)

y t

t
←Ð

t
+
1

● They assume θ is known.

● The predictive pdf can be
computed with the conditional
pdf p(x t ∣x t−1,θ) (given by the
state-space model).

● The likelihood is given by the
state-space model.

Ð→ Usually θ is not given.
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Parameter estimation

Applying the same principles to parameter estimation

Predictive pdf
p(θ∣y 1∶t−1)

Likelihood
p(y t ∣θ,y 1∶t−1)

Posterior pdf
p(θ∣y 1∶t)

y t

t
←Ð

t
+
1

● The likelihood is NOT
described by the
state-space model.

● Neither the likelihood nor
the posterior distribution of
θ can be computed directly.

Ð→ Several approaches have been proposed to solve this problem.
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State of the Art Methods

Some methods for parameter and state estimation can be classified
as

Ð→ State augmentation methods with artificial dynamics. They
use an extended state vector x̃ t = [x t ,θt]⊺.

Ð→ Particle learning (PL) techniques. It is a sampling-resampling
scheme that depends only on a set of finite-dimensional statistics.

Ð→ Recursive maximum likelihood (RML) methods. They are
well-principled but they provide only output point estimates.
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State of the Art Methods

During the past years, there have been advances leading to methods that

● aim at calculating the posterior probability distribution of the
unknown variables and parameters of the models.

● can be applied to a broad class of models.

● are well-principled probabilistic methods with theoretical
guarantees.
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State of the Art Methods

Some examples are:

● sequential Monte Carlo square (SMC2)1 Ð→ batch technique

● particle Markov chain Monte Carlo (PMCMC)2 Ð→ batch

● nested particle filter (NPF)3: two intertwined layers of Monte
Carlo methods (one for the state tracking and the other for the
parameter estimation)

Ð→ it is a recursive technique.
Ð→ The computational cost becomes prohibitive in

high-dimensional problems.

1Chopin, Jacob, and Papaspiliopoulos, “SMC2: A sequential Monte Carlo
algorithm with particle Markov chain Monte Carlo updates”.

2Andrieu, Doucet, and Holenstein, “Particle Markov chain Monte Carlo methods”.
3Crisan and Miguez, “Nested particle filters for online parameter estimation in

discrete-time state-space Markov models”.
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Summary

The state-of-the-art methods have one or more of the following issues:

● Lack of theoretical guarantees.

● Restricted to very specific models.

● Estimation error not quantified.

● Batch technique.

● Prohibitive computational cost for high-dimensional problems.
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Objectives

We propose a generalised methodology that estimate the joint
posterior probability distribution of the parameters and the
state that

Ð→ works recursively,

Ð→ uses the nested structure of the NPF and

Ð→ reduces the computational cost.
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Optimal filter

We assume θ and the previous post. pdf p(x t−1∣y 1∶t−1,θ) are known.

Predictive pdf
p(x t ∣y 1∶t−1,θ)

Likelihood
p(y t ∣x t ,θ)

Posterior pdf
p(x t ∣y 1∶t ,θ)

y t

t
←Ð

t
+
1

The posterior pdf can be written as

p(x t ∣y 1∶t ,θ)∝ p(y t ∣x t ,θ)p(x t ∣y 1∶t−1,θ)
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Transition pdf

Previous post. pdf
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p(x t−1∣y 1∶t−1,θ)dx t−1
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Model inference

We aim at computing the joint posterior pdf p(θ,x t ∣y 1∶t), that can be
written as

p(θ,x t ∣y 1∶t) = p(x t ∣θ,y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2nd layer

p(θ∣y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1st layer

Ð→ The key difficulty in this class of models is the Bayesian estimation
of the parameter vector θ.
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1st layer of inference

Predictive pdf
p(θ∣y 1∶t−1)

Likelihood
p(y t ∣θ,y 1∶t−1)

Posterior pdf
p(θ∣y 1∶t)

y t

The posterior pdf can be written as

p(θ∣y 1∶t)∝ p(y t ∣θ,y 1∶t−1)p(θ∣y 1∶t−1)

t
←Ð

t
+
1
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Model inference

p(θ∣y 1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pred. pdf of θ

p(y t ∣θ,y 1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Likelihood of θ

= ∫ p(y t ∣x t ,θ)p(x t ∣θ,y 1∶t−1)dx t

p(θ∣y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Post. pdf of θ

∝ p(y t ∣θ,y 1∶t−1)p(θ∣y 1∶t−1)

p(x t ∣θ,y 1∶t−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Pred. pdf of x

= ∫ p(x t ∣x t−1,θ)p(x t−1∣θ,y 1∶t−1)dx t−1

p(y t ∣x t ,θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Likelihood of x

p(x t ∣θ,y 1∶t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Post. pdf of x

∝ p(y t ∣x t ,θ)p(x t ∣θ,y 1∶t−1)

1st layer

2nd layer
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Nested hybrid filter

● We introduce the use of different types of Monte Carlo methods
in the first layer of the algorithm (SMC or SQMC).

● Gaussian methods are applied in the second layer (EKFs, EnKFs,
etc).

● We obtain theoretical guarantees on the convergence.
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Nested hybrid filter
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Convergence Theorem

The sequence of posterior probability measures of the unknown
parameters, p(θ∣y 1∶t), t ≥ 1, can be constructed recursively starting from
a prior p(θ) as

p(θ∣y 1∶t)∝ ut(θ) ⋆ p(θ∣y 1∶t−1)

where ut(θ) = p(y t ∣θ,y 1∶t−1).

A.1. The estimator ût(θ) is random and can be written as

ût(θ) = ut(θ) + bt(θ) +mt(θ),

where ut(θ) ∶= p(y t ∣θ,y 1∶t−1) is the true likelihood, mt(θ) is a
zero-mean random variable with finite variance and bt(θ) is a
deterministic and bounded bias function.
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Convergence Theorem

Theorem 1
Let the sequence of observations y1∶to be arbitrary but fixed, with to <∞, and choose
an arbitrary function h ∈ B(D). Let pN(dθ∣y1∶t) = 1

N ∑
N
i=1 δθi

t
(dθ) be the random

probability measure in the parameter space generated by the nested filter. If A.1 holds
and under regularity conditions, then

∥∫ h(θ)pN(dθ∣y1∶t) − ∫ h(θ)p̄(θ∣y1∶t)dθ∥p ≤
ct∥h∥∞√

N
,

for t = 0,1, . . . , to , where {ct}0≤t≤to is a sequence of constants independent of N. ◻

If, instead of the true likelihood ut(θ), we use another biased function
ūt(θ) ≠ ut(θ) to update the posterior probability measure p(θ∣y1∶t), then we
obtain the new sequence of measures

p̄(θ∣y1∶t)∝ ūt(θ) ⋆ p̄(θ∣y1∶t−1), t = 1,2, . . .
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A stochastic Lorenz 96 model
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A stochastic Lorenz 96 model
We consider a stochastic two-scale Lorenz 96 model that is described by

● the slow state variable, x = [x1, . . . , xdx ]⊺,
● the fast state variable, z = [z1, . . . , zdz ]⊺, with dz = Ldx ,
● the static parameters α = [F ,C ,B,H]⊺ and

● for j = 1, . . . ,dx and l = 1, . . . ,dz , the following SDEs (in
continuous time)

dxj =

f 1,j(x,z,α)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

[ − xj−1(xj−2 − xj+1) − xj + F −
HC

B

Lj−1

∑
l=(j−1)L

zl]dτ + σxdvj ,

dzl = [ − CBzl+1(zl+2 − zl−1) − Czl +
CF

B
+ HC

B
x⌊(l−1)L⌋]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
f 2,l(x,z,α)

dτ + σzdwl ,
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A Stochastic Lorenz 96 Model

● Applying a discretization method with a step ∆, we obtain the
discrete-time version

x t = x t−1 +∆f 1(x t−1, z t−1,α) + σxv t ,

z t = z t−1 +∆f 2(x t−1, z t−1,α) + σzw t

● The observations are written as

y t =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

xK ,tm

x2K ,tm

⋮
xdyK ,tm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ r t , (1)

Ð→ This model is used to generate the ground truth values for the
slow variables {x t}t≥0, and the synthetic observations, {y t}t≥0.
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A Stochastic Lorenz 96 Model

For the forecast model, we use instead the differential equation

ẋj = fj(x ,θ) = −xj−1(xj−2 − xj+1) − xj + F −
HC

B

Lj−1

∑
l=(j−1)L

zl (2)

where

● function ℓ(xj , a) is a polynomial in xj of degree 2, for the coupling

term HC
B ∑

Lj−1
l=(j−1)L

z̄l .

● a = [a1, a2]⊺ is a (constant) parameter vector,

● θ = [F , a⊺]⊺ contains all the parameters.
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Numerical results

We have implemented four different algorithms following the nested
hybrid methodology:

2nd layer
Extended Kalman

filter (EKF)
Ensemble Kalman

filter (EnKF)
1st
layer

Sequential Monte
Carlo (SMC)

SMC-EKF SMC-EnKF

Sequential quasi-
Monte Carlo (SQMC)

SQMC-EKF SQMC-EnKF
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Numerical results

Algorithm Running time (minutes) MSE
NHF: SQMC-EKF 2.16 0.46
NHF: SMC-EKF 2.27 0.49
NHF: SQMC-EnKF 6.83 0.62
NHF: SMC-EnKF 7.12 0.95
NPF (N =M = 800) 17.96 11.91

Ð→ In the four cases of NHF, the accuracy and the running time are
improved in comparison to the NPF.

Ð→ The least error and running times are obtained with the NHFs that
use the EKF in the second layer.

Ð→ Using the same samples N, the SQMC reduces slightly the running
time and the error compared to the SMC.
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Numerical results
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Numerical results
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Ð→ As the gap between observations m increases, less data points are
effectively available for the estimation task.
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Summary of NHFs

● We introduce the nested hybrid filters (NHFs), that use Monte
Carlo-based methods in the first layer and Gaussian methods in the
second layer.

● The algorithm converges to a well defined limit distribution.

● We have implemented four algorithms (SQMC-EKF,
SQMC-EnKF, SMC-EKF and SMC-EnKF) that outperform the
NPF.

● The selection of the filtering techniques in each layer depends on
the specific problem.
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Nested Gaussian filter

● We introduce the use of deterministic sampling techniques in the
first layer of the algorithm, such as the cubature Kalman filter
(CKF) and the unscented Kalman filter (UKF).

● We keep applying Gaussian methods in the second layer of the
algorithm.

● We describe how the algorithms can work sequentially and
recursively.
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Nested Gaussian filter
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Recursivity of NGF

Ð→ This filter is not recursive.

● As every time step t the sigma-points θi
t are recalculated, the

computations of the second layer need to start from scratch.

● In order to make it recursive we approximate

p(x t−1∣y 1∶t−1,θ
i
t) ≈ p(x t−1∣y 1∶t−1,θ

i
t−1).
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Recursive NGF

Every time step the norm ∥ θi
t − θi

t−1 ∥p is computed and
compared against a prescribed relative threshold λ > 0.

● If ∥ θi
t − θi

t−1 ∥p< λ ∥ θi
t−1 ∥p,

we assume p(x t−1∣y1∶t−1,θ
i
t) ≈ p(x t−1∣y1∶t−1,θ

i
t−1).

● If ∥ θi
t − θi

t−1 ∥p> λ ∥ θi
t−1 ∥p,

we need to compute the pdf p(x t−1∣y1∶t−1,θ
i
t) from the prior

p(x0).
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Nested Gaussian filter

p(θ∣y 1∶t−1)
Sigma-points {θi

t ,w
i
t}

p(θ∣y 1∶t) = N (θ̂t , Ĉ
θ

t )

Recursive
p(x t ∣θi

t ,y 1∶t)

p(y t ∣θ
i
t ,y 1∶t−1)

y t

p(x0)

t steps
OR

Non-recursive
p(x t ∣θi

t ,y 1∶t)

p(y t ∣θ
i
t ,y 1∶t−1)

y t

UKF (M sigma-points)

EKF (for each θi
t)

1st layer

2nd layer
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The Lorenz 63 model

We consider a stochastic Lorenz 63 model, whose dynamics are described
by
● the state variables x t with

dimension dx = 3,
● the static parameters

θ = [S ,R,B]⊺ and

● the following SDEs

dx1 = [−S(x1 − x2)]dτ + σdv1,
dx2 = [Rx1 − x2 − x1x3]dτ + σdv2,
dx3 = [x1x2 −Bx3]dτ + σdv3,
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The Lorenz 63 model

● Applying a discretization method with step ∆, we obtain

x1,t+1 = x1,t −∆S(x1,t − x2,t) +
√
∆σv1,t ,

x2,t+1 = x2,t +∆[(R − x3,t)x1,t − x2,t] +
√
∆σv2,t ,

x3,t+1 = x3,t +∆(x1,tx2,t −Bx3,t) +
√
∆σv3,t ,

● We assume linear observations of the form

y t = ko [
x1,t
x3,t
] + r t ,

where ko is a fixed known parameter and r t ∼ N (r t ∣0, σ2
y I 2).
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Numerical results
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Ð→ We observe that below λ = 10−3 there is almost no improvement in
the error of the state.
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Numerical results
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Summary of NGFs

● We introduce the nested Gaussian filters (NGFs), that use
deterministic sampling methods in the first layer and Gaussian
methods in the second layer.

● We have introduced and assessed the values of a relative threshold
λ > 0 that enables the algorithm to work recursively.

● We have implemented a UKF-EKF and compare it to other
algorithms.
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Conclusions

● We have introduced a generalized nested methodology that
estimates the full posterior distribution of the static parameters
and state dynamical variables.

● This probabilistic methodology admits different types of
filtering techniques in each layer, leading to the nested hybrids
filters, the nested Gaussian filters and the NPF.

● We keep the algorithm working recursively by applying the jittering
or by using a distance dependant on the parameter space.

● We have proved, under general assumptions, that the family of
nested hybrid filters converges to a possibly biased version of the
posterior distribution of the parameters.

● The use of Gaussian filters in the nested methodology admits fast
implementations and are well suited to high-dimensional
systems.
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Conclusions

● Further generalization of the nested filters to estimate
heterogeneous multi-scale systems.

● Three layers of computation for the static parameters and the
two sets of state variables.
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Future research

● Further research in the extension of the nested methodology to
general multi-scale state-space models.

● Further study of the NGFs by introducing cubature rules in the
first layer of the algorithm.

● Introduction to recursive maximum likelihood methods in the
first layer of the algorithm.

● Extension of the convergence analysis.

● Application of the methodology to large-scale models.
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Thank you!
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